Answer:
The quotient of any two numbers can be written as:
A/B
such that:
A, B ∈ {R}
Where {R} is the set of all real numbers.
But we also have the restriction that the denominator, B in this case, must be different than zero.
So we can define the set:
{R \ {0}}
As the set of all the real numbers minus the element 0.
So in this set we do not have the number zero, so now we can write our expression as:
A/B
A ∈ {R}, B ∈ {R \ {0}}
2/3:2 = 1/3:1 The last one is in simplest form.
Answer:
============================
<h2>Given expression:</h2>

<h2>Simplify it in steps:</h2>
<h3>Step 1</h3>
Bring both fractions into common denominator:

<h3>Step 2</h3>
Simplify:






<h3>Step 3</h3>
Compare the result with given expression to get:
Tara's Bedroom: A = lw
A = (9)(8)
A = 72 ft²
Jody's Bedroom: A = lw
A = (7)(10)
A = 70 ft²
Tara's bedroom has the greater area than Jody's bedroom.
Answer:
Step-by-step explanation:
Given a function
, we called the rate of change to the number that represents the increase or decrease that the function experiences when increasing the independent variable from one value "
" to another "
".
The rate of change of
between
and
can be calculated as follows:

For:

Let's find
and
, where:
![[x_1,x_2]=[-4,3]](https://tex.z-dn.net/?f=%5Bx_1%2Cx_2%5D%3D%5B-4%2C3%5D)

So:

And for:

Let's find
and
, where:
![[x_1,x_2]=[-4,3]](https://tex.z-dn.net/?f=%5Bx_1%2Cx_2%5D%3D%5B-4%2C3%5D)

So:

<em>Translation:</em>
Dada una función
, llamábamos tasa de variación al número que representa el aumento o disminución que experimenta la función al aumentar la variable independiente de un valor "
" a otro "
".
La tasa de variación de
entre
y
, puede ser calculada de la siguiente forma:

Para:

Encontremos
y
, donde:
![[x_1,x_2]=[-4,3]](https://tex.z-dn.net/?f=%5Bx_1%2Cx_2%5D%3D%5B-4%2C3%5D)

Entonces:

Y para:

Encontremos
y
, donde:
![[x_1,x_2]=[-4,3]](https://tex.z-dn.net/?f=%5Bx_1%2Cx_2%5D%3D%5B-4%2C3%5D)

Entonces:
