Answer:
f(-5) = 6
Step-by-step explanation:
f(x) = x + 11
Let x = -5
f(-5) = -5+11
f(-5) = 6
2/5 of 30 = 12
30 + 12 = 42
£42
Let p(x) be a polynomial, and suppose that a is any real
number. Prove that
lim x→a p(x) = p(a) .
Solution. Notice that
2(−1)4 − 3(−1)3 − 4(−1)2 − (−1) − 1 = 1 .
So x − (−1) must divide 2x^4 − 3x^3 − 4x^2 − x − 2. Do polynomial
long division to get 2x^4 − 3x^3 − 4x^2 – x – 2 / (x − (−1)) = 2x^3 − 5x^2 + x –
2.
Let ε > 0. Set δ = min{ ε/40 , 1}. Let x be a real number
such that 0 < |x−(−1)| < δ. Then |x + 1| < ε/40 . Also, |x + 1| <
1, so −2 < x < 0. In particular |x| < 2. So
|2x^3 − 5x^2 + x − 2| ≤ |2x^3 | + | − 5x^2 | + |x| + | − 2|
= 2|x|^3 + 5|x|^2 + |x| + 2
< 2(2)^3 + 5(2)^2 + (2) + 2
= 40
Thus, |2x^4 − 3x^3 − 4x^2 − x − 2| = |x + 1| · |2x^3 − 5x^2
+ x − 2| < ε/40 · 40 = ε.
Answer:
A.
Step-by-step explanation:
1 radian = 180/π
So
Multiplying both sides by 25π/18
We'll get,
25π/18 (r) = (180/π)×(25π/18)
= (180×25)/18
= 10×25
= 250 degrees
Answer:
the answer is c
Step-by-step explanation:
45% of 1500=675
38% of 1500=570
675+570=1245
1500-1245=255