R(–3, 4)
Step-by-step explanation:
Let Q(-9,8) and S(9,-4) be the given points and let R(x, y) divides QS in the ratio 1:2.
By section formula,

Here, 
Substituting this in the section formula
To simplifying the expression, we get

⇒ R(x,y) = R(–3,4)
Hence, the coordinates of point R is (–3, 4).
Answer:
B = A/5h - b; You could use
B = (A - 5hb)/5h This just puts everything over a common denominator.
Step-by-step explanation:
A = 5h (B + b) Divide both sides by 5h
A/5h = B + b Subtract b from both sides.
A/5h - b = B
8/15 is about 0.53
It would be closer to 1/2 or 1 over 2


- <u>A </u><u>triangle </u><u>with </u><u>sides </u><u>11m</u><u>, </u><u> </u><u>13m </u><u>and </u><u>18m</u>

- <u>We</u><u> </u><u>have </u><u>to </u><u>check </u><u>it </u><u>whether </u><u>it </u><u>is </u><u>right </u><u>angled </u><u>triangle </u><u>or </u><u>not</u><u>? </u>


According to the Pythagoras theorem, The sum of the squares of perpendicular height and the square of the base of the triangle is equal to the square of hypotenuse that is sum of the squares of two small sides equal to the square of longest side of the triangle.
<u>We </u><u>imply</u><u> </u><u>it </u><u>in </u><u>the </u><u>given </u><u>triangle </u><u>,</u>





<u>From </u><u>Above </u><u>we </u><u>can </u><u>conclude </u><u>that</u><u>, </u>
The sum of the squares of two small sides that is perpendicular height and base is not equal to the square of longest side that is Hypotenuse

I hope this helps you
(x-6)(x-1)