Answer:
The answer is below
Step-by-step explanation:
1)
mean (μ) = 12, SD(σ) = 2.3, sample size (n) = 65
Given that the confidence level (c) = 90% = 0.9
α = 1 - c = 0.1
α/2 = 0.05
The z score of α/2 is the same as the z score of 0.45 (0.5 - 0.05) which is equal to 1.65
The margin of error (E) is given as:

The confidence interval = μ ± E = 12 ± 0.47 = (11.53, 12.47)
2)
mean (μ) = 23, SD(σ) = 12, sample size (n) = 45
Given that the confidence level (c) = 88% = 0.88
α = 1 - c = 0.12
α/2 = 0.06
The z score of α/2 is the same as the z score of 0.44 (0.5 - 0.06) which is equal to 1.56
The margin of error (E) is given as:

The confidence interval = μ ± E = 23 ± 2.8 = (22.2, 25.8)
Answer:
x 1 = -3
x2 = -3
y1 = 0
y2 = 5
The slope of that equation is infinite and the equation is a perfectly vertical line at x = -3.
So, the equation is x = -3.
Step-by-step explanation:
Hello!
Since the function has no undefined points or domain constants the answer is all real numbers
The answer is all real numbers
Hope this helps!
Answer:
Trampolinist will land on the trampoline after 0.9 seconds.
Step-by-step explanation:
The function h(t) = -16t² + 15 represents the relation between height 'h' above the ground and the time 't' of the trampolinist.
We have to find the time when trampolinist lands on the ground.
That means we have to find the value of 't' when h(t) = 15 - 13 = 2
[Since trampoline is 2 feet above the ground]
When we plug in the value h(t) = 2
2 = -16t² + 15
2 + 16t² = -16t² + 16t² + 15
16t² + 2 = 15
16t² + 2 - 2 = 15 - 2
16t² = 13


t = 
t ≈ 0.9 seconds
Therefore, trampolinist will land on the trampoline at 0.9 seconds.
I don't see any green dot, sorry.