For this, just subtract both sides by 12x and <u>your answer will be
</u>
Answer: see proof below
<u>Step-by-step explanation:</u>
Given: A + B + C = π and cos A = cos B · cos C
scratchwork:
A + B + C = π
A = π - (B + C)
cos A = cos [π - (B + C)] Apply cos
= - cos (B + C) Simplify
= -(cos B · cos C - sin B · sin C) Sum Identity
= sin B · sin C - cos B · cos C Simplify
cos B · cos C = sin B · sin C - cos B · cos C Substitution
2cos B · cos C = sin B · sin C Addition
Division
2 = tan B · tan C

<u>Proof LHS → RHS</u>
Given: A + B + C = π
Subtraction: A = π - (B + C)
Apply tan: tan A = tan(π - (B + C))
Simplify: = - tan (B + C)

Substitution: = -(tan B + tan C)/(1 - 2)
Simplify: = -(tan B + tan C)/-1
= tan B + tan C
LHS = RHS: tan B + tan C = tan B + tan C 
Answer:
y = -3/2 x + 4
Step-by-step explanation:
y-4 = -3/2 ( x-0)
y = -3/2 x + 4
Answer:

Step-by-step explanation:
- If f(x) is in th form of f(x)=g(x)-h(x) then f'(x)=g'(x) - h'(x)
- When f(x)=z(g(x)) then f'(x)= z'(g(x))g'(x) (called as chain rule)
<u>using these information</u>:
g(x)=ln2x then g'(x)=
h(x)=In(3x - 1) then h'(x)=![\frac{(3x-1)'}{3x-1} =\frac{3}{3x-1}f'(x)=g'(x) - h'(x) =[tex]\frac{1}{x} - \frac{3}{3x-1} =\frac{-1}{3x^2-x}](https://tex.z-dn.net/?f=%5Cfrac%7B%283x-1%29%27%7D%7B3x-1%7D%20%3D%5Cfrac%7B3%7D%7B3x-1%7D%3C%2Fp%3E%3Cp%3Ef%27%28x%29%3Dg%27%28x%29%20-%20h%27%28x%29%20%3D%5Btex%5D%5Cfrac%7B1%7D%7Bx%7D%20-%20%5Cfrac%7B3%7D%7B3x-1%7D%20%3D%5Cfrac%7B-1%7D%7B3x%5E2-x%7D)
<span>149 times 235 is equal to </span>35,015.