I believe it's D <span>.DNA repair enzymes often repair errors.
</span>I believe this because enzymes<span> remove incorrect bases with a few surrounding bases, which </span>are<span> replaced with the </span>correct<span> bases with the help of a DNA polymerase and the template DNA. When replication mistakes </span>are<span> not corrected, then it may result in </span>mutations<span>, which sometimes </span>can<span> have serious consequences.</span>
Answer:
A rock's exposure to the weathering elements and its surface area can affect its rate of weathering. Rocks that are constantly bombarded by running water, wind, and other erosion agents, will weather more quickly. Rocks that have a large surface area exposed to these agents will also weather more quickly.
Explanation:
Properties of the Parent Rock ;
- The mineralogy and structure of a rock affects it’s susceptibility to weathering.
- Different minerals weather at different rates. Mafic silicates like olivine and pyroxene tend to weather much faster than felsic minerals like quartz and feldspar. Different minerals show different degrees of solubility in water in that some minerals dissolve much more readily than others. Water dissolves calcite more readily than it does feldspar, so calcite is considered to be more soluble than feldspar.
-
A rock’s structure also affects its susceptibility to weathering. Massive rocks like granite generally to not contain planes of weakness whereas layered sedimentary rocks have bedding planes that can be easily pulled apart and infiltrated by water. Weathering therefore occurs more slowly in granite than in layered sedimentary rocks.
I want 10 point lol the answer is 40
Answer:
A
Explanation:
The answer is A. sometimes that stuff happens
Answer:
D) In case 1, both PS I and PS II completely lose function; in case 2, a proton gradient is still produced.
Explanation:
The light dependent reaction of photosynthesis, which produces the ATP and NADPH needed in the light independent stage of the process, includes complexes of proteins and pigments called PHOTOSYSTEMS. These photosystems (I and II) are key to the functionality of the light dependent reactions in the thylakoid.
The major pigment present in both photosystems is CHLOROPHYLL A, which absorbs light energy and transfers electrons to the reaction center. Chlorophyll B is only an accessory pigment meaning it can be done without. Hence, if all of the chlorophyll A is inactivated in the algae but leaves chlorophyll B intact as in case 1, both PS I and PS II will lose their function because Chlorophyll A is the major pigment that absorbs light energy in both photosystems.
In case 2, if PS I is inhibited and PS II is unaffected, a PROTON GRADIENT WILL STILL BE PRODUCED because the splitting of water into protons (H+) and electrons (e-) occurs in PSII. Hence, H+ ions can still be pumped into the inner membrane of the thylakoid in order to build a proton gradient even without the occurrence of PS I.