Answer:
The earth’s crust is broken into separate pieces called tectonic plates (Fig. 7.14). Recall that the crust is the solid, rocky, outer shell of the planet. It is composed of two distinctly different types of material: the less-dense continental crust and the more-dense oceanic crust. Both types of crust rest atop solid, upper mantle material. The upper mantle, in turn, floats on a denser layer of lower mantle that is much like thick molten tar.
Each tectonic plate is free-floating and can move independently. Earthquakes and volcanoes are the direct result of the movement of tectonic plates at fault lines. The term fault is used to describe the boundary between tectonic plates. Most of the earthquakes and volcanoes around the Pacific ocean basin—a pattern known as the “ring of fire”—are due to the movement of tectonic plates in this region. Other observable results of short-term plate movement include the gradual widening of the Great Rift lakes in eastern Africa and the rising of the Himalayan Mountain range. The motion of plates can be described in four general patterns:
<p><strong>Fig 7.15.</strong> Diagram of the motion of plates</p>
Collision: when two continental plates are shoved together
Subduction: when one plate plunges beneath another (Fig. 7.15)
Spreading: when two plates are pushed apart (Fig. 7.15)
Transform faulting: when two plates slide past each othe
Explanation:
A reaction to something that has happened and affected the body as it was trying to prevent the action
Answer:
Carbon dioxide
Explanation:
The Lewis structure of carbon dioxide shows that the carbon in CO2 must make 2 sigma bonds and it has no lone pairs.
The bond angle from O = C = O is 180° because the geometry is a linear geometry.
Answer: The central nervous system (CNS) is the collection of neurons that make up the brain and the spinal cord. The peripheral nervous system (PNS) is the collection of neurons that link the CNS to our skin, muscles, and glands. Neurons are specialized cells, found in the nervous system, which transmit information
Explanation:
Answer:
The <u>nuclear envelope</u> is composed of two concentric lipid bilayer membranes separated by an intermembrane space of about 20-40 nm. The outer membrane is continuous in many places with the rough endoplasmic reticulum. Like the rough ER the outer membrane of the nuclear envelope is dotted with ribosomes.