Answer:
~8.66cm
Step-by-step explanation:
The length of a diagonal of a rectangular of sides a and b is

in a cube, we can start by computing the diagonal of a rectangular side/wall containing A and then the diagonal of the rectangle formed by that diagonal and the edge leading to A. If the cube has sides a, b and c, we infer that the length is:

Using this reasoning, we can prove that in a n-dimensional space, the length of the longest diagonal of a hypercube of edge lengths
is

So the solution here is

Step-by-step explanation:
Fraction = 280% / 100%
= 280/100 = 14/5 or 2 4/5.
Answer:
5gghbjfjhdjfjfifnrjfjfnfkfnf.jc79239nfkfnfjf
Answer:
2 solutions
Step-by-step explanation:
I like to use a graphing calculator to find solutions for equations like these. The two solutions are ...
__
To solve this algebraically, it is convenient to subtract 2x-7 from both sides of the equation:
3x(x -4) +5 -x -(2x -7) = 0
3x^2 -12x +5 -x -2x +7 = 0 . . . . . eliminate parentheses
3x^2 -15x +12 = 0 . . . . . . . . . . . . collect terms
3(x -1)(x -4) = 0 . . . . . . . . . . . . . . . factor
The values of x that make these factors zero are x=1 and x=4. These are the solutions to the equation. There are two solutions.
__
<em>Alternate method</em>
Once you get to the quadratic form, you can find the number of solutions without actually finding the solutions. The discriminant is ...
d = b^2 -4ac . . . . where a, b, c are the coefficients in the form ax^2+bx+c
d = (-15)^2 -4(3)(12) = 225 -144 = 81
This positive value means the equation has 2 real solutions.
Answer:
$-568 billion dollars.
Step-by-step explanation:
2,094 - 2,662= -568.
Hope this helps and good luck!