Answer:
24
Step-by-step explanation:
The question is saying, how many three digit numbers can be made from the digits 3, 4, 6, and 7 but there can't be two of the same digit in them. For example 346 fits the requirements, but 776 doesn't, because it has two 7s.
Okay, on to the problem:
We can do one digit at a time.
First digit:
There are 4 digits that we can choose from. (3, 4, 6, and 7)
Second digit:
No matter which digit we chose for the first digit, there is only going to be 3 of them left, because we already chose one, and you can't repeat that same digit. So there are 3 options.
Third digit:
Using the same logic, there are only 2 options left.
We have 4 choices for the first digit, 3 choices for the second, and 2 for the third.
Hence, this is 4 * 3 * 2 = 24 three-digit numbers that can be made.
Answer:
755
Step-by-step explanation:
DeltaMath
Im thinking it's false. 18 isn't even between 4 and 9.
The height of the can for this case is given by:
h = 40 mm
The radius of the can is given by:
r = (1 3/8) * h
Substituting values:
r = (1 3/8) * 40
r = 55 mm
Therefore, the diameter of the can is:
d = 2 * r
d = 2 * 55
d = 110 mm
Answer:
The diameter of the can will be:
d = 110 mm
The answer to your question is 20