Answer:
The most appropriate value of the critical value is 2.289.
Step-by-step explanation:
We are given that a researcher takes a random sample of 41 bulbs and determines that the mean consumption is 1.3 watts per hour with a standard deviation of 0.7.
We have to find that when constructing a 97% confidence interval, which would be the most appropriate value of the critical value.
Firstly, as we know that the test statistics that would be used here is t-test statistics because we don't know about the population standard deviation.
So, for finding the critical value we will look for t table at (41 - 1 = 40) degrees of freedom at the level of significance will be
.
Now, as we can see that in the t table the critical values for P = 1.5% are not given, so we will interpolate between P = 2.5% and P = 1%, i.e;

So, the critical value at a 1.5% significance level is 2.289.
Answer:z
Then variable is n
Variable is an alphabet that depend on number. Then the variable there is n
And the coefficient of the variable is 2
The coefficient is the number behind a variable
And the value of the variable is
2n-3=7
Add 3 to both sides
2n-3+3=7+3
2n=10
Divide both side by 2
2n/2=10/2
n=5
Answer:
Choice 3 is your answer
Step-by-step explanation:
The format of the function when you move it side to side or up and down is
f(x) = (x - h) + k,
where h is the side to side movement and k is up or down. The k is easy, since it will be positive if we move the function up and negative if we move the function down from its original position.
The h is a little more difficult, but just remember the standard form of the side to side movement is always (x - h). If our function has moved 3 units to the left, we fit that movement into our standard form as (x - (-3)), which of course is the same as (x + 3). Our function has moved up 5 units, so the final translation is
g(x) = f(x + 3) + 5, choice 3 from the top.
Answer:
Length = 80 m and breadth = 60 m If one moves along the two adjacent sides, one covers 80+60 = 140 m. Diagonal of the rectangle = √ ( length^2 + breadth^2) ...