<em>So</em><em> </em><em>the</em><em> </em><em>right</em><em> </em><em>answer</em><em> </em><em>is</em><em> </em><em>2</em><em>1</em><em>/</em><em>1</em><em>6</em><em> </em><em>cubic</em><em> </em><em>ce</em><em>ntimetres</em>
<em>Look</em><em> </em><em>at</em><em> </em><em>the</em><em> </em><em>attached</em><em> </em><em>picture</em>
<em>Hope</em><em> </em><em>it</em><em> </em><em>will</em><em> </em><em>help</em><em> </em><em>you</em>
<em>good</em><em> </em><em>luck</em><em> </em><em>on</em><em> </em><em>your</em><em> </em><em>assignment</em>
Answer:
Step-by-step explanation:
When using the substitution method we use the fact that if two expressions y and x are of equal value x=y, then x may replace y or vice versa in another expression without changing the value of the expression.
Solve the systems of equations using the substitution method
{y=2x+4
{y=3x+2
We substitute the y in the top equation with the expression for the second equation:
2x+4 = 3x+2
4−2 = 3x−2
2=== = x
To determine the y-value, we may proceed by inserting our x-value in any of the equations. We select the first equation:
y= 2x + 4
We plug in x=2 and get
y= 2⋅2+4 = 8
The elimination method requires us to add or subtract the equations in order to eliminate either x or y, often one may not proceed with the addition directly without first multiplying either the first or second equation by some value.
Example:
2x−2y = 8
x+y = 1
We now wish to add the two equations but it will not result in either x or y being eliminated. Therefore we must multiply the second equation by 2 on both sides and get:
2x−2y = 8
2x+2y = 2
Now we attempt to add our system of equations. We commence with the x-terms on the left, and the y-terms thereafter and finally with the numbers on the right side:
(2x+2x) + (−2y+2y) = 8+2
The y-terms have now been eliminated and we now have an equation with only one variable:
4x = 10
x= 10/4 =2.5
Thereafter, in order to determine the y-value we insert x=2.5 in one of the equations. We select the first:
2⋅2.5−2y = 8
5−8 = 2y
−3 =2y
−3/2 =y
y =-1.5
Jason is incorrect, because inequality signs change when we multiply/divide by negative numbers, and we need to follow the signs to make sure we use the correct one.
<h3>
</h3><h3>
Is Jason correct whit his claim?</h3>
Well, Jason says that you can solve an inequality by replacing the sign by an equal sign, solve the equation as you already have done a thousand times, and then put the inequality sign again.
Now, this is clearly incorrect, because inequalities have a really nice property. If you multiply or divide both sides of the inequality by a negative number, then the "direction" of the sign changes.
This means that if we have an inequality like:
-2x > 10
And we divide both sides by -2, we should get:
x < 10/-2
x < -5
Where the direction of the sign changed.
If you did what Jason said, the direction of that sign would not have changed, and thus, you would have got an incorrect solution for the inequality.
If you want to learn more about inequalities:
brainly.com/question/24372553
#SPJ1
Answer:
Hulian's age is 7.
Thomas's age is 22.
Step-by-step explanation:
Let Hulian = h
Let Thomas = t
Set the system of equation:
h = t - 15
h + t = 29
Plug in t - 15 for h in the second equation:
(t - 15) + t = 29
Simplify. Combine like terms:
2t - 15 = 29
Isolate the variable, t. Note the equal sign, what you do to one side, you do to the other. Do the opposite of PEMDAS. First, add 15 to both sides:
2t - 15 (+15) = 29 (+15)
2t = 44
Divide 2 from both sides:
(2t)/2 = (44)2
t = 44/2
t = 22
Plug in 22 for t in one of the equations:
h = t - 15
h = 22 - 15
h = 7
Hulian's age is 7.
Thomas's age is 22.
~
Answer:
Step-by-step explanation:
im not positive but wouldnt that be (2.5.,5.5) because its in beteween the numbers?