Answer:
The minimum value of f(x) is 2
Step-by-step explanation:
- To find the minimum value of the function f(x), you should find the value of x which has the minimum value of y, so we will use the differentiation to find it
- Differentiate f(x) with respect to x and equate it by 0 to find x, then substitute the value of x in f(x) to find the minimum value of f(x)
∵ f(x) = 2x² - 4x + 4
→ Find f'(x)
∵ f'(x) = 2(2)
- 4(1)
+ 0
∴ f'(x) = 4x - 4
→ Equate f'(x) by 0
∵ f'(x) = 0
∴ 4x - 4 = 0
→ Add 4 to both sides
∵ 4x - 4 + 4 = 0 + 4
∴ 4x = 4
→ Divide both sides by 4
∴ x = 1
→ The minimum value is f(1)
∵ f(1) = 2(1)² - 4(1) + 4
∴ f(1) = 2 - 4 + 4
∴ f(1) = 2
∴ The minimum value of f(x) is 2
Answer:

General Formulas and Concepts:
<u>Algebra I</u>
Terms/Coefficients
<u>Calculus</u>
Differentiation
- Derivatives
- Derivative Notation
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Derivative Rule [Quotient Rule]: ![\displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%20%5B%5Cfrac%7Bf%28x%29%7D%7Bg%28x%29%7D%20%5D%3D%5Cfrac%7Bg%28x%29f%27%28x%29-g%27%28x%29f%28x%29%7D%7Bg%5E2%28x%29%7D)
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify</em>

<u>Step 2: Differentiate</u>
- Derivative Rule [Quotient Rule]:

- Basic Power Rule:

- Exponential Differentiation:

- Simplify:

- Rewrite:

- Factor:

Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Differentiation
The square is reflected but the part Ellen sides would remain the same as the starting location.
Side PO would be parallel to side PS. INCORRECT
Side PQ would be parallel to side SR. CORRECT
Side PS would be parallel to side QR. CORRECT
<span>4000 so the answer is C
Hope this helps</span>
Answer:
The answer to this question is A >
Step-by-step explanation:
I got it right on edge 2020 :)