Answer:
and ![[6,9,8,7]](https://tex.z-dn.net/?f=%5B6%2C9%2C8%2C7%5D)
Step-by-step explanation:
GIVEN: an array of ten integers
.
TO FIND: If we partition this array using Quick sort's partition function and using
for the pivot. List the elements of the resulting array after the partition finishes.
SOLUTION:
quick sort is a divide and conquer algorithm in which an array is partitioned into sub-arrays about an pivot element by checking whether elements are greater than pivot or and then sub arrays are sorted recursively.
Here
is the pivot element.
two arrays will be created, in first array element less than or equal to pivot element are stored in other elements greater than pivot element are stored.
Starting from first element of array
elements in first array will be ![=[4,0,3,1,2,5]](https://tex.z-dn.net/?f=%3D%5B4%2C0%2C3%2C1%2C2%2C5%5D)
elements in second array will be ![=[6,9,8,7]](https://tex.z-dn.net/?f=%3D%5B6%2C9%2C8%2C7%5D)
Hence the resulting array after the partition finishes are
and ![[6,9,8,7]](https://tex.z-dn.net/?f=%5B6%2C9%2C8%2C7%5D)
What percent of 55 is 13
percent means parts out of 100
x%=x/100
'of' means multiply
what percent of 55 is 13 means
x/100 times 55=13
times both sides by 100
55x=1300
divide both sides by 55
x=23.63636363636363
answer is 23.63%
Hello,
Answer C
Using Thales, 3/8=5/A==>A=5*8/3=40/3
the distance form X to Y is clearly -6 to 0 is 6 units, and 0 to 8 is 8 units, so 6 + 8 = 14 units.
now, for XZ and ZY we can simply use as stated, the distance formula to get those and then add them all to get the perimeter.
![\bf ~~~~~~~~~~~~\textit{distance between 2 points} \\\\ X(\stackrel{x_1}{-6}~,~\stackrel{y_1}{2})\qquad Z(\stackrel{x_2}{5}~,~\stackrel{y_2}{8})\qquad \qquad d = \sqrt{( x_2- x_1)^2 + ( y_2- y_1)^2} \\\\\\ XZ=\sqrt{[5-(-6)]^2+[8-2]^2}\implies XZ=\sqrt{(5+6)^2+(8-2)^2} \\\\\\ XZ=\sqrt{121+36}\implies \boxed{XZ=\sqrt{157}} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cbf%20~~~~~~~~~~~~%5Ctextit%7Bdistance%20between%202%20points%7D%20%5C%5C%5C%5C%20X%28%5Cstackrel%7Bx_1%7D%7B-6%7D~%2C~%5Cstackrel%7By_1%7D%7B2%7D%29%5Cqquad%20Z%28%5Cstackrel%7Bx_2%7D%7B5%7D~%2C~%5Cstackrel%7By_2%7D%7B8%7D%29%5Cqquad%20%5Cqquad%20d%20%3D%20%5Csqrt%7B%28%20x_2-%20x_1%29%5E2%20%2B%20%28%20y_2-%20y_1%29%5E2%7D%20%5C%5C%5C%5C%5C%5C%20XZ%3D%5Csqrt%7B%5B5-%28-6%29%5D%5E2%2B%5B8-2%5D%5E2%7D%5Cimplies%20XZ%3D%5Csqrt%7B%285%2B6%29%5E2%2B%288-2%29%5E2%7D%20%5C%5C%5C%5C%5C%5C%20XZ%3D%5Csqrt%7B121%2B36%7D%5Cimplies%20%5Cboxed%7BXZ%3D%5Csqrt%7B157%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)
![\bf ~~~~~~~~~~~~\textit{distance between 2 points} \\\\ Z(\stackrel{x_2}{5}~,~\stackrel{y_2}{8})\qquad Y(\stackrel{x_2}{8}~,~\stackrel{y_2}{2})\qquad \qquad d = \sqrt{( x_2- x_1)^2 + ( y_2- y_1)^2} \\\\\\ ZY=\sqrt{(8-5)^2+(2-8)^2}\implies ZY=\sqrt{9+36}\implies \boxed{ZY=\sqrt{45}} \\\\[-0.35em] ~\dotfill\\\\ \stackrel{perimeter}{14+\sqrt{157}+\sqrt{45}}\qquad \approx \qquad 33.2](https://tex.z-dn.net/?f=%5Cbf%20~~~~~~~~~~~~%5Ctextit%7Bdistance%20between%202%20points%7D%20%5C%5C%5C%5C%20Z%28%5Cstackrel%7Bx_2%7D%7B5%7D~%2C~%5Cstackrel%7By_2%7D%7B8%7D%29%5Cqquad%20Y%28%5Cstackrel%7Bx_2%7D%7B8%7D~%2C~%5Cstackrel%7By_2%7D%7B2%7D%29%5Cqquad%20%5Cqquad%20d%20%3D%20%5Csqrt%7B%28%20x_2-%20x_1%29%5E2%20%2B%20%28%20y_2-%20y_1%29%5E2%7D%20%5C%5C%5C%5C%5C%5C%20ZY%3D%5Csqrt%7B%288-5%29%5E2%2B%282-8%29%5E2%7D%5Cimplies%20ZY%3D%5Csqrt%7B9%2B36%7D%5Cimplies%20%5Cboxed%7BZY%3D%5Csqrt%7B45%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Cstackrel%7Bperimeter%7D%7B14%2B%5Csqrt%7B157%7D%2B%5Csqrt%7B45%7D%7D%5Cqquad%20%5Capprox%20%5Cqquad%2033.2)
Equal to 3n+p
i think thats it