The charge balance equation for an aqueous solution of H₂CO₃ that ionizes to HCO₃⁻ and CO₃⁻² is [HCO₃⁻] = 2[CO₃⁻²] + [H⁺] + [OH⁻]
<h3>What is Balanced Chemical Equation ?</h3>
The balanced chemical equation is the equation in which the number of atoms on the reactant side is equal to the number of atoms on the product side in an equation.
The equation for aqueous solution of H₂CO₃ is
H₂CO₃ → H₂O + CO₂
The charge balance equation is
[HCO₃⁻] = 2[CO₃⁻²] + [H⁺] + [OH⁻]
Thus from the above conclusion we can say that The charge balance equation for an aqueous solution of H₂CO₃ that ionizes to HCO₃⁻ and CO₃⁻² is [HCO₃⁻] = 2[CO₃⁻²] + [H⁺] + [OH⁻]
Learn more about the Balanced Chemical equation here: brainly.com/question/26694427
#SPJ4
It’s appearance
It’s physical form
What it feels like
How hot it gets
If it melts
Shape
Color
Answer:
D. an orbital notation of the atom
Explanation:
Orbital notiation uses lines and arrows to show shells, subshells, and orbitals for electrons in an atom. Since it shows arrows being paired up in this diagram it would be the best model for Chuck to use.
-<u><em>Oxygen</em></u>
According to Google these are the percentages of the <em>Earths Atmosphere</em>
<em>1</em> 78% - Nitrogen
<u>2</u> 21% - Oxygen
<em>3</em> 0.9% - Argon
<em>4 </em>0.3 - Carbon Dioxide with very small percentage of other elements.