Answer:
A combination is certainly possible, but you should not take formal charges so literally
Normally, when a covalent bond is found, the two atoms both bring in one electron. As you identify correctly, in the case of nitric acid that would not be possible completely. If you draw the different possible resonance structures, the most likely structure has a single bond between the nitrogen and an oxygen where the oxygen has 3 lone pairs and both electrons in the bond are donated by the nitrogen. This makes the nitrogen "positive" and that oxygen "negative", but in fact the electrons move more freely in the molecule and charges are more distributed. You will not be able to find "the negatively charged" oxygen atom.
Explanation:
<h2>
<u>PLEASE</u><u> </u><u>MARK</u><u> ME</u><u> BRAINLIEST</u><u> AND</u><u> FOLLOW</u><u> M</u><u> E</u><u> LOTS</u><u> OF</u><u> LOVE</u><u> FROM</u><u> MY</u><u> HEART</u><u> AND</u><u> SOUL</u><u> DARLING</u><u> </u><u>TEJASWI </u><u> HERE</u><u> ❤️</u></h2>
Answer:
3.14 moles of hydrogen are produced
Explanation:
This is because for every 1 molesof hydrogen are produced 2 moles of oxygen are produced. So we take 6.28 divide it by 2 and we wend up with 3.14.
First use this equation to find the wave speed: vms== =τµ/ 0.4/ 0.001 20 / Then use the equation for solving frequency of a wavelength, and solve for wavelength λ = v/f = 20/100 = .2 m = 20 cm.
Answer:
Compound
Explanation:
-compound is a chemical substance composed of many identical molecules composed of atoms from more than one element held together by chemical bonds.
The question in English is "<span>Determine the mass, in kg, of a material that is contained in a volume of 18L. It is known that the material density is 0.9 g/cm 3"
Answer:
</span>
We can use a simple
equation to solve this problem. <span>
d =
m/v</span><span>
<span>Where </span>d <span>is
the density, </span>m <span>is
the mass and </span>v is the volume.
d = </span>0.9<span> g/cm³
m = ?
v = </span>18 L = 18 x 10³ cm³<span>
By applying the equation,
<span> 0.9 g/cm³ = m / </span></span>18 x 10³ cm³<span>
m = 0.9 g/cm³ x </span>18 x 10³ cm³<span>
<span>
</span>m = 16200 g
m = 16.2 kg
Hence, the mass of
18 L of material is 16.2 kg.</span>