The value of z-score for a score that is three standard deviations above the mean is 3.
In this question,
A z-score measures exactly how many standard deviations a data point is above or below the mean. It allows us to calculate the probability of a score occurring within our normal distribution and enables us to compare two scores that are from different normal distributions.
Let x be the score
let μ be the mean and
let σ be the standard deviations
Now, x = μ + 3σ
The formula of z-score is

⇒ 
⇒ 
⇒ 
Hence we can conclude that the value of z-score for a score that is three standard deviations above the mean is 3.
Learn more about z-score here
brainly.com/question/13448290
#SPJ4
No, because 1 is not a mixed and there is not another pair of nubers that equal 2 in mixed numbers.
If you're using the app, try seeing this answer through your browser: brainly.com/question/2790456______________


I hope this helps.=)
Tags: <em>sine sin common angles trig trigonometry </em>
What is it?
The IQR describes the middle 50% of values when ordered from lowest to highest. To find the interquartile range (IQR), first find the median (middle value) of the lower and upper half of the data. These values are quartile 1 (Q1) and quartile 3 (Q3). The IQR is the difference between Q3 and Q1.
How do you find IQR?
<em>Step 1: Put the numbers in order. ...</em>
<em>Step 2: Find the median. ...</em>
<em>Step 3: Place parentheses around the numbers above and below the median. Not necessary statistically, but it makes Q1 and Q3 easier to spot. ...</em>
<em>Step 4: Find Q1 and Q3. ...</em>
<em>Step 5: Subtract Q1 from Q3 to find the interquartile range.</em>
True. maths is applied in every day life for instance in science and accounting and as well as when daily with money