Answer:
x
=
(23
+
√
497 /
8)
, (23
−
√
497 /8)
x=5.66168710
Step-by-step explanation:
im too lazy. use math-way
Answer:
15 and 14
Step-by-step explanation:
15+14=29
15-14=1
Answer:
PART A: Inequality (a)
Solve for y
The graph of y ≥ ⅓(8-x) is represented by the upper red line and all points in the shaded area below it. The line is solid because points on the line satisfy the conditions.
Inequality (b)
Solve for y
The graph of y ≥ 2 - x is represented by the lower blue line and all points in the shaded area above it. The line is solid because points on the line satisfy the conditions. The solution lies in the purple area. It consists of all combinations of x and y that make y ≥ ⅓(8 - x) and y ≥ 2 - x. A practical but not a mathematical condition is that all values of x and y must be zero or positive numbers (for example, you can't have -2 servings of food), so I have plotted only the numbers in the first quadrant.
PART B: If a point is a solution of the system, then the point must satisfy both inequalities of the system.
For x=8, y=2. Verify inequality A is not true. So the point does not satisfy inequality A. Therefore, the point is not included in the solution area for the system.
PART C: I choose the point (3,1) which is included in the solution area for the system.
That means Michelle buys 3 serves of dry food and 1 serving of wet food.
Step-by-step explanation:
Plz mark Brainliest?
Answer:

Step-by-step explanation:
A 3D figure is given to us and we need to find the Total Surface area of the 3D figure . So ,
From the cuboid we can see that there are 5 squares in one row on the front face . And there are two rows. So the number of squares on the front face will be 5*2 = 10 .
We know the area of square as ,
Hence the area of 10 squares will be 10x² , where x is the side length of each square. Similarly there are 10 squares at the back . Hence their area will be 10x² .
Also there are in total 12 squares sideways 6 on each sides . So their surface area will be 12x² . Hence the total surface area in terms of side of square will be ,
Now let's find out the TSA in terms of side . So here the lenght of the cuboid is equal to the sum of one of the sides of 5 squares .


Hence the TSA of cuboid in terms of lenght and breadth is :-
