That would be option A as the angles and sides ( the AS) have already been stated.
◆ Define the variables:
Let the calorie content of Candy A = a
and the calorie content of Candy B = b
◆ Form the equations:
One bar of candy A and two bars of candy B have 774 calories. Thus:
a + 2b = 774
Two bars of candy A and one bar of candy B contains 786 calories
2a + b = 786
◆ Solve the equations:
From first equation,
a + 2b = 774
=> a = 774 - 2b
Put a in second equation
2×(774-2b) + b = 786
=> 2×774 - 2×2b + b = 786
=> 1548 - 4b + b = 786
=> -3b = 786 - 1548
=> -3b = -762
=> b = -762/(-3) = 254 calorie
◆ Find caloric content:
Caloric content of candy B = 254 calorie
Caloric content of candy A = a = 774 - 2b = 774 - 2×254 = 774 - 508 = 266 calorie
Answer:
3/7 and 4/14
Step-by-step explanation:
a) 3/7 is not an equivalent of 6/21 because when you multiply the numerator and the denominator by 2 you get: 6/14
b) 4/14 is not an equivalent
It would take 630 seconds to boil the water.
Answer:
See explanation
Step-by-step explanation:
In ΔABC, m∠B = m∠C.
BH is angle B bisector, then by definition of angle bisector
∠CBH ≅ ∠HBK
m∠CBH = m∠HBK = 1/2m∠B
CK is angle C bisector, then by definition of angle bisector
∠BCK ≅ ∠KCH
m∠BCK = m∠KCH = 1/2m∠C
Since m∠B = m∠C, then
m∠CBH = m∠HBK = 1/2m∠B = 1/2m∠C = m∠BCK = m∠KCH (*)
Consider triangles CBH and BCK. In these triangles,
- ∠CBH ≅ ∠BCK (from equality (*));
- ∠HCB ≅ ∠KBC, because m∠B = m∠C;
- BC ≅CB by reflexive property.
So, triangles CBH and BCK are congruent by ASA postulate.
Congruent triangles have congruent corresponding sides, hence
BH ≅ CK.