Answer:
Por ejemplo, podrías utilizar la división para determinar cómo repartir 40 ... 15 ÷ 5 = 3. Podrías también usar la recta numérica para modelar ésta división. ... ¿Cuáles de las siguientes expresiones representan dividir $56 en partes iguales entre 7 ... “5, 10, 15, 20, 25, 30. Debo saltar 6 veces para llegar a 30.” 30 ÷ 5 = 6.
Step-by-step explanation:
Answer:
false
Step-by-step explanation:
the only difference is the fact that it was reflected over the y-axis. the size of the triangle was not altered. the triangles are the same size, just different locations.
Problem 4
a)
MR = AG is a true statement because MARG is an isosceles trapezoid. The diagonals of any isosceles trapezoid are always the same length.
-------------------------
b)
MA = GR is false. Parallel sides in a trapezoid are never congruent (otherwise you'll have a parallelogram).
-------------------------
c)
MR and AG do NOT bisect each other. The diagonals bisect each other only if you had a parallelogram.
=================================================
Problem 5
a)
LC = AJ (nonparallel sides of isosceles trapezoid are always the same length)
x^2 = 25
x = sqrt(25)
<h3>x = 5</h3>
-------------------------
b)
LU = 25
UC = 25 because point U cuts LC in half
LC = LU+UC = 25+25 = 50
AJ = LC = 50 (nonparallel sides of isosceles trapezoid are always the same length)
AS = (1/2)*AJ
AS = (1/2)*50
<h3>AS = 25</h3>
-------------------------
c)
angle LCA = 71
angle CAJ = 71 (base angles of isosceles trapezoid are always congruent)
(angleAJL)+(angleCAJ) = 180
(angleAJL)+(71) = 180
angle AJL = 180-71
<h3>angle AJL = 109 </h3>
Answer:
WX = 31
Step-by-step explanation:
(65 + WX) = 2 (48)
(65 + WX) = 96
WX = 96 - 65
WX = 31