Answer:
0.7938
Step-by-step explanation:
z1 = (125-100)/15 = 1.667
P( < 125) = 0.9522
z2 = (85-100)/15 = -1
P( > 85) = 0.8413
0.9522 + 0.8413 - 1 = 0.7935
Answer:
Additive notation is a convention often used for representing a commutative binary operation of an algebraic structure. The symbol used for the operation is +.
* Hopefully this helps:) Mark me the brainliest:)!!
Answer: 43
Step-by-step explanation:
If A and B are equal:
Matrix A must be a diagonal matrix: FALSE.
We only know that A and B are equal, so they can both be non-diagonal matrices. Here's a counterexample:
![A=B=\left[\begin{array}{cc}1&2\\4&5\\7&8\end{array}\right]](https://tex.z-dn.net/?f=A%3DB%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D1%262%5C%5C4%265%5C%5C7%268%5Cend%7Barray%7D%5Cright%5D)
Both matrices must be square: FALSE.
We only know that A and B are equal, so they can both be non-square matrices. The previous counterexample still works
Both matrices must be the same size: TRUE
If A and B are equal, they are literally the same matrix. So, in particular, they also share the size.
For any value of i, j; aij = bij: TRUE
Assuming that there was a small typo in the question, this is also true: two matrices are equal if the correspondent entries are the same.
Answer:
The weight of the water in the pool is approximately 60,000 lb·f
Step-by-step explanation:
The details of the swimming pool are;
The dimensions of the rectangular cross-section of the swimming pool = 10 feet × 20 feet
The depth of the pool = 5 feet
The density of the water in the pool = 60 pounds per cubic foot
From the question, we have;
The weight of the water in Pound force = W = The volume of water in the pool given in ft.³ × The density of water in the pool given in lb/ft.³ × Acceleration due to gravity, g
The volume of water in the pool = Cross-sectional area × Depth
∴ The volume of water in the pool = 10 ft. × 20 ft. × 5 ft. = 1,000 ft.³
Acceleration due to gravity, g ≈ 32.09 ft./s²
∴ W = 1,000 ft.³ × 60 lb/ft.³ × 32.09 ft./s² = 266,196.089 N
266,196.089 N ≈ 60,000 lb·f
The weight of the water in the pool ≈ 60,000 lb·f