The formula of an arithmetic sequence is the following :

A geometric sequence is in the form:
The answer for this is (-3b4) (3b4 +) = 121a10-9b8
F−g+(−2)f, minus, g, plus, left parenthesis, minus, 2, right parenthesis where f = -3.005f=−3.005f, equals, minus, 3, point, 005
valentina_108 [34]
Answer:

Step-by-step explanation:
Given


Required
Determine 
We have:

Open brackets

Substitute values for f and g

Solve
Answer: a) 83, b) 28, c) 14, d) 28.
Step-by-step explanation:
Since we have given that
n(B) = 69
n(Br)=90
n(C)=59
n(B∩Br)=28
n(B∩C)=20
n(Br∩C)=24
n(B∩Br∩C)=10
a) How many of the 269 college students do not like any of these three vegetables?
n(B∪Br∪C)=n(B)+n(Br)+n(C)-n(B∩Br)-n(B∩C)-n(Br∩C)+n(B∩Br∩C)
n(B∪Br∪C)=
So, n(B∪Br∪C)'=269-n(B∪Br∪C)=269-156=83
b) How many like broccoli only?
n(only Br)=n(Br) -(n(B∩Br)+n(Br∩C)+n(B∩Br∩C))
n(only Br)=
c) How many like broccoli AND cauliflower but not Brussels sprouts?
n(Br∩C-B)=n(Br∩C)-n(B∩Br∩C)
n(Br∩C-B)=
d) How many like neither Brussels sprouts nor cauliflower?
n(B'∪C')=n(only Br)= 28
Hence, a) 83, b) 28, c) 14, d) 28.