Answer:
x = 27°, ∠JLK = 55°
Step-by-step explanation:
From the diagram in the question above,
The exterior angle of a triangle is equal to the sum of the two opposite side
3x+13 = 39+(2x+1)
3x+13 = 40+2x
collect like terms and solve for x
3x-2x = 40-13
x = 27°.
∠JKL = 2x+1
Substitute the value of x
∠JKL = 2(27)+1
∠JKL = 54+1
∠JKL = 55°
Answer:
18
Step-by-step explanation:
PY =
YV
YV = 12
VY = 18
Answer:
10
Step-by-step explanation:
pls mark me as brainliest :))
Answer:
steps below
Step-by-step explanation:
3.2.1 AD = DB* sin 2 = DB * sin θ .. DE // AB ∠2= θ ... (1)
By laws of sines: DB / sin ∠5 = x / sin ∠4
∠4 = θ-α ∠5 = 180°-<u>∠1</u>-∠4 = 180°-<u>∠3</u>-∠4 = 180°-(90°-θ)-(θ-α)) = 90°+α
DB = (x*sin ∠5)/sin (θ-α)
= (x* sin (90°+α)) / sin (θ-α)
AD = DB*sinθ
= (x* sin (90°+α))*sinθ / sin (θ-α)
= x* (sin90°cosα+cos90°sinα)*sinθ / sin (θ-α) .... sin90°=1, cos90°=0
= x* cosα* sinθ / sin (θ-α)
3.2.2 Please apply Laws of sines to calculate the length