Answer:
ok,i know
Step-by-step explanation:
there is no like terms
Answer:
D 11/12
Step-by-step explanation:
the fractions round up by 2
example, 2/12, 4/12, 6/12, 8/12.... etc
A system of equations with infinitely many solutions is a system where the two equations are identical. The lines coincide. Anything that is equal to

will work. You could try multiply the entire equation by some number, or moving terms around, or adding terms to both sides, or any combination of operations that you apply to the entire equation.
You could multiply the whole thing by 4.5 to get

. If you want, you could mix things up and write it in slope-intercept form:

. The point is, anything that is equivalent to the original equation will give infinitely many solutions x and y. You can test this by plugging in values x and y and seeing the answers!
The attached graph shows that four different equations are really the same.
Here's the factorization of the equation
f(x) = [ (x+4)(2x-1) ] / [ (x-1)(x^2+x+1) ]
<u>Domain</u>
The domain of a function is the set of input or argument values for which the function is real and defined.
- function domain : x < 1 or x > 1
<u>Range
</u><u />Resulting f(x) values: all Real Numbers<u>
</u>
<u>Roots
</u>x = 1/2 & -4
<u>Axis interception points</u>
x-axis: (1/2, 0) , (-4, 0)
(y-axis): (0, 4)
<u>Asymptotes</u>
Vertical: x = 1
Horizontal: y = 0
Answer:
do you have a picture of this