Answer: β ≠ ±1
Step-by-step explanation: For a system of equations to have an unique solution, its determinant must be different from 0: det |A| ≠ 0. So,
det
≠ 0
Determinant of a 3x3 matrix is calculated by:
det ![\left[\begin{array}{ccc}1&\beta&1-\beta\\2&2&0\\2-2\beta&4&0\end{array}\right]\left[\begin{array}{ccc}1&\beta\\2&2\\2-2\beta&4\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%26%5Cbeta%261-%5Cbeta%5C%5C2%262%260%5C%5C2-2%5Cbeta%264%260%5Cend%7Barray%7D%5Cright%5D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%26%5Cbeta%5C%5C2%262%5C%5C2-2%5Cbeta%264%5Cend%7Barray%7D%5Cright%5D)
![8(1-\beta)-[2(2-2\beta)(1-\beta)]](https://tex.z-dn.net/?f=8%281-%5Cbeta%29-%5B2%282-2%5Cbeta%29%281-%5Cbeta%29%5D)




β ≠ ±1
For the system to have only one solution, β ≠ 1 or β ≠ -1.
Answer:
.
Step-by-step explanation:
Answer:
(5,9)
(-19, - 15)
(5, - 15)
(-19, 9)
Step-by-step explanation:
Given that :
Coordinate of point A = - 7, - 3
Number of points between point A and B = 12
Possible coordinate of point B
Possible coordinates of point B:
(-7, - 3) + 12 = (5, 9)
(-7, - 3) - 12 = (-19, - 15)
(-7, - 3) = (-7 +12, -3 - 12) = (5, - 15)
(-7, - 3) = (-7 - 12, - 3 + 12) = (-19, 9)
Hence possible coordinates of be are :
(5,9)
(-19, - 15)
(5, - 15)
(-19, 9)
Answer:
8 inches.
Step-by-step explanation:
3 1/4 + 4 3/4
= 3 + 4 + 1/4 + 3/4
= 7 + 4/4
= 7 + 1
= 8 inches.

3x² + 5x - 2 = 0
3x² + 6x - x - 2 = 0
3x(x) + 3x(2) - 1(x) - 1(2) = 0
3x(x + 2) - 1(x + 2) = 0
(3x - 1)(x + 2) = 0
3x - 1 = 0 or x + 2 = 0
+ 1 + 1 - 2 - 2
3x = 1 or x = -2
3 3 1 1
x = ¹/₃ or x = -2
f(x) = 3x² + 5x - 2
f(¹/₃) = 3(¹/₃)² + 5(¹/₃) - 2
f(¹/₃) = 3(¹/₉) + 1²/₃ - 2
f(¹/₃) = ¹/₃ - ¹/₃
f(¹/₃) = 0
(x, f(x)) = (¹/₃, 0)
f(x) = 3x² + 5x - 2
f(-2) = 3(-2)² + 5(-2) - 2
f(-2) = 3(4) - 10 - 2
f(-2) = 12 - 12
f(-2) = 0
(x, f(x)) = (-2, 0)
Vertical Asymptotes: ¹/₃ or -2
Horizontal Asymptotes: 0
Oblique Asymptote: No Asymptotes