Answer:
None of them
Step-by-step explanation:
Because i can't see the graph
Answer:
a.) f(x) =
where 90 < x < 120
b.) 
c.) 
d.) 
Step-by-step explanation:
Let
X be a uniform random variable that denotes the actual charging time of battery.
Given that, the actual recharging time required is uniformly distributed between 90 and 120 minutes.
⇒X ≈ ∪ ( 90, 120 )
a.)
Probability density function , f (x) =
where 90 < x < 120
b.)
P(x < 110) = 
= ![\frac{1}{30}[x]\limits^{110}_{90} = \frac{1}{30} [ 110 - 90 ] = \frac{1}{30} [ 20] = \frac{2}{3}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B30%7D%5Bx%5D%5Climits%5E%7B110%7D_%7B90%7D%20%20%3D%20%5Cfrac%7B1%7D%7B30%7D%20%5B%20110%20-%2090%20%5D%20%3D%20%5Cfrac%7B1%7D%7B30%7D%20%5B%2020%5D%20%3D%20%5Cfrac%7B2%7D%7B3%7D)
c.)
P(x > 100 ) = 
= ![\frac{1}{30}[x]\limits^{120}_{100} = \frac{1}{30} [ 120 - 100 ] = \frac{1}{30} [ 20] = \frac{2}{3}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B30%7D%5Bx%5D%5Climits%5E%7B120%7D_%7B100%7D%20%20%3D%20%5Cfrac%7B1%7D%7B30%7D%20%5B%20120%20-%20100%20%5D%20%3D%20%5Cfrac%7B1%7D%7B30%7D%20%5B%2020%5D%20%3D%20%5Cfrac%7B2%7D%7B3%7D)
d.)
P(95 < x< 110) = 
= ![\frac{1}{30}[x]\limits^{110}_{95} = \frac{1}{30} [ 110 - 95 ] = \frac{1}{30} [ 15] = \frac{1}{2}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B30%7D%5Bx%5D%5Climits%5E%7B110%7D_%7B95%7D%20%20%3D%20%5Cfrac%7B1%7D%7B30%7D%20%5B%20110%20-%2095%20%5D%20%3D%20%5Cfrac%7B1%7D%7B30%7D%20%5B%2015%5D%20%3D%20%5Cfrac%7B1%7D%7B2%7D)
Answer: B) 3+y+3
This can be simplified to y+6, but the current un-simplified expression has 3 terms.
======================================
Explanation:
Terms are separated by a plus sign. If you had something like 10x-5y, then you would write that as 10x+(-5y) showing that 10x and -5y are the two terms.
Choices A and C, xy and 6y respectively, have one term each. They are considered monomials. Mono = one, nomial = name.
Choice D is the product of the constant 3 and the binomial y+3. Binomials have two terms.
Only choice B has three terms, though we can simplify it down to two terms. I have a feeling your teacher doesn't want you to simplify it.