Answer: 
Step-by-step explanation:
Let be "x" the time in minutes a 150-pound person must walk at 4 mph to use at least 190 calories.
The amount of calories that a 150-pound person uses in 1 minute when walking at a speed of 4 mph is:

Therefore, knowing this, we can write the following proportion:

Finally, we must solve for "x" in order to find its value.
Multiplying both sides of the equation by 190, we get this result:

Answer:
Step-by-step explanation:
X^2-10x-8=0
Solve simultaneously
Y= 1x + 2
Use the formula y=mx+b when trying to do things like this.
Y intercept form is when your line intersects through the y axis, and this is also your b. M is your slope.
13pi/12 lies between pi and 2pi, which means sin(13pi/12) < 0
Recall the double angle identity,
sin^2(x) = (1 - cos(2x))/2
If we let x = 13pi/12, then
sin(13pi/12) = - sqrt[(1 - cos(13pi/6))/2]
where we took the negative square root because we expect a negative value.
Now, because cosine has a period of 2pi, we have
cos(13pi/6) = cos(2pi + pi/6) = cos(pi/6) = sqrt[3]/2
Then
sin(13pi/12) = - sqrt[(1 - sqrt[3]/2)/2]
sin(13pi/12) = - sqrt[2 - sqrt[3]]/2
Answer:
Step-by-step explanation:
Use the point-slope formula.
y - y_1 = m(x - x_1) .... x_1 = 3 and y_1 = - 1
m is the slope to x - 3y = 9 because (lines are parallel )
calculate : m by equation x - 3y = 9 :
x = 3y +9
divid by : 3 1/3 x = y + 3
y = (1/3) x - 3 so : m = 1/3
an equation parallel to x - 3y = 9 that passes through the point ( 3, -1 ) is :
y +1 = (1/3)(x - 3)