Answer:
A. 15
Step-by-step explanation:
Width (w): 5
Height (h): 6
Area of Triangle (A) = 1/2wh
A = 1/2(5)(6)
A = 5 x 3
A = 15 units squared
Hope this helped! <3
The value of the function h(x + 1) is -x^2 - x + 1
<h3>How to evaluate the function?</h3>
The equation of the function is given as:
h(t) =-t^2 + t + 1
The function is given as:
h(x + 1)
This means that t = x + 1
So, we substitute t = x + 1 in the equation h(t) =-t^2 + t + 1
h(x + 1) =-(x + 1)^2 + (x + 1) + 1
Evaluate the exponent
h(x + 1) =-(x^2 + 2x + 1) + x + 1 + 1
Expand the brackets
h(x + 1) = -x^2 - 2x - 1 + x + 1 + 1
Evaluate the like terms
h(x + 1) = -x^2 - x + 1
Hence, the value of the function h(x + 1) is -x^2 - x + 1
Read more about functions at:
brainly.com/question/1415456
#SPJ1
<u>Complete question</u>
Consider the following function definition, and calculate the value of the function
h(t) = −t2 + t + 1 h(x + 1)
185 • 12 = $2,220
So your answer is $2,220
One method is to round 997 up to 1000, multiply by 8, and then subtract 8 times 3. This would give you the solution of 7976.
Another method (Which I personally wouldn't use) is to recursively double 997. This is more difficult, although effective. After you double 997, double the resulting number, and then double the resulting number from that, you have the solution. This is because 2^3 is 8.
The values of x in the triangles and the angles in the rhombus are illustrations of tangent ratios
- The values of x in the triangles are 21.4 units, 58 degrees and 66 degrees
- The angles in the rhombus are 44 and 46 degrees, respectively
<h3>How to determine the values of x?</h3>
<u>Triangle 1</u>
The value of x is calculated using the following tangent ratio
tan(25) = 10/x
Make x the subject
x = 10/tan(25)
Evaluate
x = 21.4
<u>Triangle 2</u>
The value of x is calculated using the following tangent ratio
tan(x) = 8/5
Evaluate the quotient
tan(x) = 1.6
Take the arc tan of both sides
x = arctan(1.6)
Evaluate
x = 58
<u>Triangle 3</u>
The value of x is calculated using the following tangent ratio
tan(x) = 0.34/0.15
Evaluate the quotient
tan(x) = 2.27
Take the arc tan of both sides
x = arctan(2.27)
Evaluate
x = 66
<h3>How to calculate the angles of the rhombus?</h3>
The lengths of the diagonals are:
L1 = 2 in
L2 = 5 in
Represent the angles with x and y.
The measures of the angles are calculated using the following tangent ratios
tan(0.5x) = 2/5 and y = 90 - x
Evaluate the quotient
tan(0.5x) = 0.4
Take the arc tan of both sides
0.5x = arctan(0.4)
Evaluate
0.5x = 22
Divide by 0.5
x = 44
Recall that:
y = 90 - x
This gives
y = 90 - 44
Evaluate
y = 46
Hence, the angles in the rhombus are 44 and 46 degrees, respectively
Read more about tangent ratio at:
brainly.com/question/13347349