1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
djyliett [7]
3 years ago
14

Which of the following is not a solution of the equation y=3x-4?

Mathematics
1 answer:
Allushta [10]3 years ago
5 0
Plug in the numbers
2 = 3(2) - 4, true
-4 = 3(0) - 4, true
8 = 3(4) - 4, true
-1 = 3(-1) - 4, false

Solution: D
You might be interested in
Which activity is 6 times faster than the fastest rowing speed?
Debora [2.8K]
The answer is Luge. And I searched up your question and found the whole practice sheet with the answer key. Just put the question on google and you'll find it.


Hope this helps!
6 0
3 years ago
Read 2 more answers
60 % of 80 ASAP pls bruuh
Sati [7]

Answer:

48

Step-by-step explanation:

just ask siri

7 0
4 years ago
The port of South Louisiana, located along 54 miles of the Mississippi River between New Orleans and Baton Rouge, is the largest
Ksenya-84 [330]

Answer:

a) 0.7287

b) 0.9663

c) 0.237

d) 3.65 tons of cargo per week or more that will require the port to extend its operating hours.  

Step-by-step explanation:

We are given the following information in the question:

Mean, μ =  4.5 million tons of cargo per week

Standard Deviation, σ = 0 .82 million tons

We are given that the distribution of number of tons of cargo handled per week is a bell shaped distribution that is a normal distribution.

Formula:

z_{score} = \displaystyle\frac{x-\mu}{\sigma}

a) P( port handles less than 5 million tons of cargo per week)

P(x < 5)

P( x < 5) = P( z < \displaystyle\frac{5 - 4.5}{0.82}) = P(z < 0.609)

Calculation the value from standard normal z table, we have,  

P(x < 5) =0.7287= 72.87\%

b) P( port handles 3 or more million tons of cargo per week)

P(x \geq 3) = P(z \geq \displaystyle\frac{3-4.5}{0.82}) = P(z \geq −1.82926)\\\\P( z \geq −1.82926) = 1 - P(z < -1.829)

Calculating the value from the standard normal table we have,

1 - 0.0337 = 0.9663 = 96.63\%\\P( x \geq 3) = 96.63\%

c)P( port handles between 3 million and 4 million tons of cargo per week)

P(3 \leq x \leq 4) = P(\displaystyle\frac{3 - 4.5}{0.82} \leq z \leq \displaystyle\frac{4-4.5}{0.82}) = P(-1.829 \leq z \leq -0.609)\\\\= P(z \leq -0.609) - P(z < -1.829)\\= 0.271-0.034 = 0.237= 23.7\%

P(3 \leq x \leq 4) = 23.7\%

d) P(X=x) = 0.85

We have to find the value of x such that the probability is 0.85.

P(X > x)  

P( X > x) = P( z > \displaystyle\frac{x - 4.5}{0.82})=0.85  

= 1 -P( z \leq \displaystyle\frac{x - 4.5}{0.82})=0.85  

=P( z \leq \displaystyle\frac{x - 4.5}{0.82})=0.15  

Calculation the value from standard normal z table, we have,  

P( z \leq -1.036) = 0.15

\displaystyle\frac{x - 4.5}{0.82} = -1.036\\x = 3.65

Thus, 3.65 tons of cargo per week or more that will require the port to extend its operating hours.

8 0
3 years ago
Jamie drives to the dance to pick up his younger brother Mike. Because of the dance's
Vika [28.1K]

Answer:

Because of traffic, she averaged only 15 miles per hour on the way there but ... If the total travel time was 2 hours how long does it take her to drive to ...

Step-by-step explanation:

5 0
3 years ago
The time it takes for a planet to complete its orbit around a particular star is called the? planet's sidereal year. The siderea
BartSMP [9]

Answer:

(a) See below

(b) r = 0.9879  

(c) y = -12.629 + 0.0654x

(d) See below

(e) No.

Step-by-step explanation:

(a) Plot the data

I used Excel to plot your data and got the graph in Fig 1 below.

(b) Correlation coefficient

One formula for the correlation coefficient is  

r = \dfrac{\sum{xy} - \sum{x} \sum{y}}{\sqrt{\left [n\sum{x}^{2}-\left (\sum{x}\right )^{2}\right]\left [n\sum{y}^{2} -\left (\sum{y}\right )^{2}\right]}}

The calculation is not difficult, but it is tedious.

(i) Calculate the intermediate numbers

We can display them in a table.

<u>    x   </u>    <u>      y     </u>   <u>       xy     </u>    <u>              x²    </u>   <u>       y²    </u>

   36       0.22              7.92               1296           0.05

   67        0.62            42.21              4489           0.40

   93         1.00            93.00           20164           3.46

 433        11.8          5699.4          233289        139.24

 887      29.3         25989.1          786769       858.49

1785      82.0        146370          3186225      6724

2797     163.0         455911         7823209    26569

<u>3675 </u>  <u> 248.0  </u>    <u>   911400      </u>  <u>13505625</u>   <u> 61504        </u>

9965   537.81     1545776.75  25569715   95799.63

(ii) Calculate the correlation coefficient

r = \dfrac{\sum{xy} - \sum{x} \sum{y}}{\sqrt{\left [n\sum{x}^{2}-\left (\sum{x}\right )^{2}\right]\left [n\sum{y}^{2} -\left (\sum{y}\right )^{2}\right]}}\\\\= \dfrac{9\times 1545776.75 - 9965\times 537.81}{\sqrt{[9\times 25569715 -9965^{2}][9\times 95799.63 - 537.81^{2}]}} \approx \mathbf{0.9879}

(c) Regression line

The equation for the regression line is

y = a + bx where

a = \dfrac{\sum y \sum x^{2} - \sum x \sum xy}{n\sum x^{2}- \left (\sum x\right )^{2}}\\\\= \dfrac{537.81\times 25569715 - 9965 \times 1545776.75}{9\times 25569715 - 9965^{2}} \approx \mathbf{-12.629}\\\\b = \dfrac{n \sum xy  - \sum x \sum y}{n\sum x^{2}- \left (\sum x\right )^{2}} -  \dfrac{9\times 1545776.75  - 9965 \times 537.81}{9\times 25569715 - 9965^{2}} \approx\mathbf{0.0654}\\\\\\\text{The equation for the regression line is $\large \boxed{\mathbf{y = -12.629 + 0.0654x}}$}

(d) Residuals

Insert the values of x into the regression equation to get the estimated values of y.

Then take the difference between the actual and estimated values to get the residuals.

<u>    x    </u>   <u>      y     </u>   <u>Estimated</u>   <u>Residual </u>

    36        0.22        -10                 10

    67        0.62          -8                  9

    93        1.00           -7                  8

   142        1.86           -3                  5

  433       11.8             19               -  7

  887     29.3             45               -16  

 1785     82.0            104              -22

2797    163.0            170               -  7

3675   248.0            228               20

(e) Suitability of regression line

A linear model would have the residuals scattered randomly above and below a horizontal line.

Instead, they appear to lie along a parabola (Fig. 2).

This suggests that linear regression is not a good model for the data.

4 0
3 years ago
Other questions:
  • A car traveled five miles in six minutes.<br>What was its speed in miles per hour?​
    15·2 answers
  • Can someone explain to me how to do this problem???
    11·1 answer
  • Suppose f(x)= x^2 fins the graph of f(x-1)
    14·1 answer
  • Helppppp idk how tu du dis
    11·2 answers
  • Sally has a discount card that reduces the price of her grocery bill in a certain grocery store
    13·1 answer
  • For the linear model, y = -67.9x + 679 , the distance, in miles y, is a function of time, x, in hours. Use the model to calculat
    8·2 answers
  • If anyone could help
    6·2 answers
  • Find the zeros of the function<br> y=x^2-1
    13·2 answers
  • The price of a necklace was increased by 10% to £154.<br> What was the price before the increase?
    9·2 answers
  • Find the slope of the line through the pair of points: (5, 20) and (4, -17)
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!