Given the table below representing the number of hours of television nine Math II class students watched the night before a big test on
triangles
along with the grades they each earned on that test.
![\begin{center} \begin{tabular} {|c|c|} Hours Spent Watching TV & Grade on Test (out of 100) \\ [1ex] 4 & 71 \\ 2 & 81 \\ 4 & 62 \\ 1 & 86 \\ 3 & 77 \\ 1 & 93 \\ 2 & 84 \\ 3 & 80 \\ 2 & 85 \end{tabular} \end{center}](https://tex.z-dn.net/?f=%5Cbegin%7Bcenter%7D%0A%5Cbegin%7Btabular%7D%0A%7B%7Cc%7Cc%7C%7D%0AHours%20Spent%20Watching%20TV%20%26%20Grade%20on%20Test%20%28out%20of%20100%29%20%20%5C%5C%20%5B1ex%5D%0A4%20%26%2071%20%5C%5C%20%0A2%20%26%2081%20%5C%5C%20%0A4%20%26%2062%20%5C%5C%20%0A1%20%26%2086%20%5C%5C%20%0A3%20%26%2077%20%5C%5C%20%0A1%20%26%2093%20%5C%5C%20%0A2%20%26%2084%20%5C%5C%20%0A3%20%26%2080%20%5C%5C%20%0A2%20%26%2085%0A%5Cend%7Btabular%7D%0A%5Cend%7Bcenter%7D)
Let the number the number of hours of television each of the students watched the night before the test be x while the grades they each earned on that test be y.
We use the following table to find the equation of the line of best fit of the regression analysis of the data.
![\begin{center} \begin{tabular} {|c|c|c|c|} x & y & x^2 & xy \\ [1ex] 4 & 71 & 16 & 284 \\ 2 & 81 & 4 & 162 \\ 4 & 62 & 16 & 248 \\ 1 & 86 & 1 & 86 \\ 3 & 77 & 9 & 231 \\ 1 & 93 & 1 & 93 \\ 2 & 84 & 4 & 168 \\ 3 & 80 & 9 & 240 \\ 2 & 85 & 4 & 170 \\ [1ex]\Sigma x=22 & \Sigma y=719 & \Sigma x^2=64 & \Sigma xy=1,682 \end{tabular} \end{center}](https://tex.z-dn.net/?f=%5Cbegin%7Bcenter%7D%20%5Cbegin%7Btabular%7D%20%7B%7Cc%7Cc%7Cc%7Cc%7C%7D%20x%20%26%20y%20%26%20x%5E2%20%26%20xy%20%5C%5C%20%5B1ex%5D%204%20%26%2071%20%26%2016%20%26%20284%20%5C%5C%202%20%26%2081%20%26%204%20%26%20162%20%5C%5C%204%20%26%2062%20%26%2016%20%26%20248%20%5C%5C%201%20%26%2086%20%26%201%20%26%2086%20%5C%5C%203%20%26%2077%20%26%209%20%26%20231%20%5C%5C%201%20%26%2093%20%26%201%20%26%2093%20%5C%5C%202%20%26%2084%20%26%204%20%26%20168%20%5C%5C%203%20%26%2080%20%26%209%20%26%20240%20%5C%5C%202%20%26%2085%20%26%204%20%26%20170%20%5C%5C%20%5B1ex%5D%5CSigma%20x%3D22%20%26%20%5CSigma%20y%3D719%20%26%20%5CSigma%20x%5E2%3D64%20%26%20%5CSigma%20xy%3D1%2C682%20%5Cend%7Btabular%7D%20%5Cend%7Bcenter%7D)
Recall that the equation of the line of best fit of a regression analysis is given by

where:

and


Thus, the equation of the line of best fit is given by y = 97.95 - 7.391x
<span>A student that watched 1.5 hours of TV will have a score given by
y = 97.95 - 7.391(1.5) = 97.95 - 11.0865 = 86.8635
Therefore, </span><span>a student’s score if he/she watched 1.5 hours of TV to the nearest whole number is 87.</span>
Hello,
x^3-12x²-2x+24=x²(x-12)-2(x-12)=(x-12)(x²-2)
=(x-12)(x-√2)(x+√2)
Answer:
Option C. 10.5(12 + x) square feet
Option E. (126 + 10.5x) square feet
Step-by-step explanation:
step 1
Find the area of the original living room
we know that
The area of the original living room is equal to

we have

substitute

step 2
Find the new area of the living room
The length of the room is being expanded by x feet
so
we have

The new area is

The expanded form of the expression is
Apply distributive property

7(10 visits) ≤ 68
70 ≤ 68
Not Viable
7(9 visits) ≤ 68
63 ≤ 68
Viable
The first solution is not viable because 10 visits will give a total cost of $70 per month, which is $2 over his monthly budget of $68.
The second solution is viable. He could visit the gym a maximum of 9 times per month for a total of $63 a month and that will be under his $68 monthly budget.
Hope this helps! :)