The statement is a conditional statement.
Answer with Step-by-step explanation:
We are given that
u+ v and u-v are orthogonal
We have to prove that u and v must have the same length.
When two vector a and b are orthogonal then

By using the property

We know that



Magnitude is always positive
When power of base on both sides are equal then base will be equal
Therefore,

Hence, the length of vectors u and v must have the same length.
Answer:
gawin mo pag isipan mo wag puro brainly
Answer:
74°
Step-by-step explanation:
A rhombus is a quadrilateral that has its opposite sides to be parallel to be each other. This means that the two interior opposite angles are equal to each other. Since the sum of the angles of a quadrilateral is 360°.
According to the triangle, since one of the acute angle is 32°, then the acute angle opposite to this angle will also be 32°.
The remaining angle of the rhombus will be calculated as thus;
= 360° - (32°+32°)
= 360° - 64°
= 296°
This means the other two opposite angles will have a sum total of 296°. Individual obtuse angle will be 296°/2 i.e 148°
This means that each obtuse angles of the rhombus will be 148°.
To get the unknown angle m°, we can see that the diagonal cuts the two obtuse angles equally, hence one of the obtuse angles will also be divided equally to get the unknown angle m°.
m° = 148°/2
m° = 74°
Hence the angle measure if m(1) is 74°
Answer:
Step-by-step explanation:
138/8 = 17.25