Answer:
When plants and animals die, organic molecules also undergoes decomposition and this causes the incorporated phosphates to go back to the soil or bodies of water.
Explanation:
Phosphates are naturally related to <u>"phosphorus."</u> <em>They play a vital role in the life of animals and plants. </em>Phosphorus can be commonly be found on the earth's land and water (although the land has a smaller amount of it). <u>Plants naturally absorb phosphate from where they're growing. Animals take up phosphates by eating plants.</u> The phosphate that plants get from the soil are considered inorganic. They only become organic when it is incorporated into the plants DNA (since this is an organic molecule).
So, this means that if there's a sufficient amount of phosphate, there will be more plants on earth as it is also important in the process of acquiring nutrients.
When animals and plants die, all of the organic molecules such as phosphate also breaks down and thus, it falls back to the soil or bodies of water. Then, they are ready to enter another Phosphorus cycle.
A bone is tissue. It forms a part of the skeletal system which is made up bones, joints, ligaments and cartilage. Cells work together in groups known as tissues. A tissue is defined as a group of similar cells working together to carry out a certain task. Examples are skin, bone, blood. Tissues in turn are grouped together to form organs. An organ is defined as a group of tissues that work together to carry out a certain task . Examples are heart, lungs, liver.
Answer:
From top to bottom, the vertebrae are:
Cervical spine: 7 vertebrae (C1–C7)
Thoracic spine: 12 vertebrae (T1–T12)
Lumbar spine: 5 vertebrae (L1–L5)
Sacrum: 5 (fused) vertebrae (S1–S5)
Coccyx: 4 (3–5) (fused) vertebrae (Tailbone)
Answer:
Well protines come in diffrent shapes, for there diffrent functions. The first level, or primary structure, is the linear sequence of amino acids that creates the peptide chain. In the secondary structure, hydrogen bonding between different amino acids creates a three-dimensional geometry like an alpha helix or pleated sheet. An alpha helix is simply a spiral or coiled molecule, whereas a pleated sheet looks like a ribbon with regular peaks and valleys as part of the fabric. The tertiary structure describes the overall shape of the protein. Most tertiary structures are either globular or fibrous. Generally, nonstructural proteins such as enzymes are globular, which means they look spherical. The enzyme amylase is a good example of a globular protein. Structural proteins are typically long and thin, and hence the name, fibrous. Quaternary structures describe the protein's appearance when a protein is composed of two or more polypeptide chains. Often the polypeptide chains will hydrogen bond with each other in unique patterns to create the desired protein configuration.
some hormones are proteins; and some proteins are involved with digestion, respiration, reproduction, and even normal vision, just to mention a few.
f the three-dimensional structure of the protein is altered because of a change in the structure of the amino acids, the protein becomes denatured and does not perform its function as expected.
Explanation:
Answer:
the last one which I'm guessing is d......cause it kinda messed up