180-34=146
146-5=141
ratio=1:4
1+4=5
141÷5=28.2
x=28.2
y=112.8
I may be wrong, ask for more opinions
-
--- O
-
Answer:
m + 188 = 232
Step-by-step explanation:
sum → +
m + 188 = 232
Answer:
the answer is 12.24 .
Step-by-step explanation:
that answer is right is because when you add of those you get 530 , then you divide by how many numbers there are which is 7 , which equals to 75.7 . when you get that number ( 75.7) you subtract that number to 65,90,85,70,70,95, and 55 . when you get the total of all of those you add those . which is 10.7, 14.3 , 9.3 , 5.7 , 5.7 , 19.3 , and 20.7 . from adding those you get 85.7. you divide by 7 and get 12.24 . hope this helps :) .
Answer: The numbers are: " 21 " and " 105 " .
___________________________________________________
Explanation:
___________________________________________________
Let "x" be the "one positive number:
Let "y" be the "[an]othyer number".
x = 1/5 (y)
___________________________________________________
Given that the difference of the two number is "84" ; and that "x" is (1/5) of "y" ; we determine that "x" is smaller than "y".
So, y − x = 84 .
Add "x" to each side of this equation; to solve for "y" in terms of "x" ;
y − x + x = 84 + x ;
y = 84 + x ;
___________________________________________________
So, we have:
x = (1/5) y ;
and: y = 84 + x ;
Substitute "(1/5)y" for "x" ; in "y = 84 + x " ; to solve for "y" ;
y = 84 + [ (1/5)y ]
Subtract " [ (1/5)y ] " from EACH SIDE of the equation ;
y − [ (1/5)y ] = 84 + [ (1/5)y ] − [ (1/5)y ] ;
to get:
[ (4/5)y ] = 84 ;
↔ (4y) / 5 = 84 ;
→ 4y = 5 * 84 ;
Divide EACH SIDE of the equation by "4" ;
to isolate "y" on one side of the equation; and to solve for "y" ;
4y / 4 = (5 * 84) / 4 ;
y = 5 * (84/4) = 5 * 21 = 105 .
y = 105 .
___________________________________________________
Now, plug "105" for "y" into:
___________________________________________________
Either:
___________________________________________________
x = (1/5) y ;
OR:
y = 84 + x ;
___________________________________________________
to solve for "x" ;
___________________________________________________
Let us do so in BOTH equations; to see if we get the same value for "x" ; which is a method to "double check" our answer ;
___________________________________________________
Start with:
x = (1/5)y
→ (1/5)*(105) = 105 / 5 = 21 ; x = 21 ;
___________________________________________________
So, x = 21; y = 105 .
___________________________________________________
Now, let us see if this values hold true in the other equation:
___________________________________________________
y = 84 + x ;
105 = ? 84 + 21 ?
105 = ? 105 ? Yes!
___________________________________________________
The numbers are: " 21 " and "105 " .
___________________________________________________