Answer:
most common form of carbon is graphite and the other is diamond
Answer:
The greatest force of gravity on the ball will occur at the point when the ball is near to hit the ground
Explanation:
We know that the earth's center attracts everything towards its center with an acceleration of 9.8 m/s² so it simply means that the change in velocity must occur to produce acceleration. When the ball comes towards the earth, its speed continuously increases and it is at maximum level when it is about to hit the ground so this is the point where gravitational force is maximum.
I hope this helps ^_^
Answer:
The fraction of the total energy goes into kinetic energy of proton is 
Explanation:
Given:
Mass of proton 
Mass of electron
kg
Here neutron at rest decays into proton and electron
⇄ 
Where
energy released
The
value of this reaction is given by

Where
kinetic energy of reaction
Here we need to find fraction of the total energy released goes into the kinetic energy of the proton




Therefore, the fraction of the total energy goes into kinetic energy of proton is 
Given:
h = 600 m, the height of descent
t = 5 min = 5*60 = 300 s, the time of descent.
Let a = the acceleration of descent., m/s².
Let u = initial velocity of descent, m/s.
Let t = time of descent, s.
The final velocity is v = 0 m/s because the helicopter comes to rest on the ground.
Note that u, v, and a are measured as positive upward.
Then
u + at = v
(u m/s) + (a m/s²)*(t s) = 0
u = - at
u = - 300a (1)
Also,
u*t + (1/2)at² = -h
(um/s)*(t s) + (1/2)(a m/s²)*(t s)² = 600
ut + (1/2)at² = 600 (2)
From (1), obtain
-300a +(1/2)(a)(90000) = -600
44700a = -600
a = - 1.3423 x 10⁻² m/s²
From (1), obtain
u = - 300*(-1.3423 x 10⁻²) = 4.03 m/s
Answer:
The acceleration is 0.0134 m/s² downward.
The initial velocity is 4.0 m/s upward.
Answer:
Wow I hope to never have to learn this
Explanation: