Complete Question
The distance between the objective and eyepiece lenses in a microscope is 19 cm . The objective lens has a focal length of 5.5 mm .
What eyepiece focal length will give the microscope an overall angular magnification of 300?
Answer:
The eyepiece focal length is
Explanation:
From the question we are told that
The focal length is 
This negative sign shows the the microscope is diverging light
The angular magnification is 
The distance between the objective and the eyepieces lenses is 
Generally the magnification is mathematically represented as
![m = [\frac{Z - f_e }{f_e}] [\frac{0.25}{f_0} ]](https://tex.z-dn.net/?f=m%20%20%3D%20%20%5B%5Cfrac%7BZ%20-%20f_e%20%7D%7Bf_e%7D%5D%20%5B%5Cfrac%7B0.25%7D%7Bf_0%7D%20%5D)
Where
is the eyepiece focal length of the microscope
Now making
the subject of the formula
![f_e = \frac{Z}{1 - [\frac{M * f_o }{0.25}] }](https://tex.z-dn.net/?f=f_e%20%20%3D%20%5Cfrac%7BZ%7D%7B1%20-%20%5B%5Cfrac%7BM%20%20%2A%20%20f_o%20%7D%7B0.25%7D%5D%20%7D)
substituting values
![f_e = \frac{ 0.19 }{1 - [\frac{300 * -0.0055 }{0.25}] }](https://tex.z-dn.net/?f=f_e%20%20%3D%20%5Cfrac%7B%200.19%20%7D%7B1%20-%20%5B%5Cfrac%7B300%20%20%2A%20%20-0.0055%20%7D%7B0.25%7D%5D%20%7D)
Answer:
ΔU = 5.21 × 10^(10) J
Explanation:
We are given;
Mass of object; m = 1040 kg
To solve this, we will use the formula for potential energy which is;
U = -GMm/r
But we are told we want to move the object from the Earth's surface to an altitude four times the Earth's radius.
Thus;
ΔU = -GMm((1/r_f) - (1/r_i))
Where;
M is mass of earth = 5.98 × 10^(24) kg
r_f is final radius
r_i is initial radius
G is gravitational constant = 6.67 × 10^(-11) N.m²/kg²
Since, it's moving to altitude four times the Earth's radius, it means that;
r_i = R_e
r_f = R_e + 4R_e = 5R_e
Where R_e is radius of earth = 6371 × 10³ m
Thus;
ΔU = -6.67 × 10^(-11) × 5.98 × 10^(24)
× 1040((1/(5 × 6371 × 10³)) - (1/(6371 × 10³))
ΔU = 5.21 × 10^(10) J
...a nerve. These send signals from the body to the brain and vice versa.
Explanation:
36. How long does it take a car to slow down from a speed of 54 km/h to 32 km/h over a distance of 65 m? Answer in seconds. 37.