Answer:
Given f(x) and g(x), please find (fog)(X) and (gof)(x) f(x) = 2x g(x) = x+3
Given f(x) and g(x), please find (fog)(X) and (gof)(x)
f(x) = 2x g(x) = x+3
print Print document PDF list Cite
Quick Answer
(fog)(x) = 2x + 6
(gof)(x) = 2x + 3
Expert Answers
HALA718 eNotes educator| CERTIFIED EDUCATOR
f(x) = 2x
g(x) = x + 3
First let us find (fog)(x)
(fog)(x) = f(g(x)
= f(x+3)
= 2(x+3)
= 2x + 6
==> (fog)(x) = 2x + 6
Now let us find (gof)(x):
(gof)(x) = g(f(x)
= g(2x)
= 2x + 3
==> (gof)(x) = 2x + 3
Step-by-step explanation:
Answer:
81
Step-by-step explanation:
9^2 = 81 bc 9x9=81
Answer:
the answer will be 1000 now as your promise make me brainliest
31 degrees, 31 degrees, 118 degrees
Step-by-step explanation:
Step 1 :
Let x be the measure of 2 angles of the given isosceles triangle with same measure
Let y be the measure of 3rd angle
So we have x + x + y = 180
Step 2 :
Given that the measure of 3rd angle of triangle is 25° more than three times the measure of either of the other two angles
So we have , y = 3 x + 25
Step 3:
Substituting for y in the first equation we have,
x + x + 3 x + 25 = 180
=> 5 x + 25 = 180
=> 5 x = 180-25 = 155
=> x = 155/5 = 31
Hence the 2 angles of the triangle are 31 degrees.
Step 4:
we have y = 3 x + 25
=> y = 3 * 31 + 25 = 118
Hence the 3rd angle of given triangle is 118 degrees
Answer:
x=12
Step-by-step explanation: