Answer:
᠌ ᠌ ᠌ ᠌ ᠌ ᠌ ᠌ ᠌ ᠌ ᠌᠌ ᠌ ᠌ ᠌ ᠌ ᠌ ᠌ ᠌ ᠌ ᠌᠌ ᠌ ᠌ ᠌ ᠌ ᠌ ᠌ ᠌ ᠌ ᠌᠌ ᠌ ᠌ ᠌ ᠌ ᠌ ᠌ ᠌ ᠌ ᠌᠌ ᠌ ᠌ ᠌ ᠌ ᠌ ᠌ ᠌ ᠌ ᠌᠌ ᠌ ᠌ ᠌ ᠌ ᠌ ᠌ ᠌ ᠌ ᠌᠌ ᠌ ᠌ ᠌ ᠌ ᠌ ᠌ ᠌ ᠌ ᠌᠌ ᠌ ᠌ ᠌ ᠌ ᠌ ᠌ ᠌ ᠌ ᠌᠌ ᠌ ᠌ ᠌ ᠌ ᠌ ᠌ ᠌ ᠌ ᠌᠌ ᠌ ᠌ ᠌ ᠌ ᠌ ᠌ ᠌ ᠌ ᠌᠌ ᠌ ᠌ ᠌ ᠌ ᠌ ᠌ ᠌ ᠌ ᠌᠌ ᠌ ᠌ ᠌ ᠌ ᠌ ᠌ ᠌ ᠌ ᠌᠌ ᠌ ᠌ ᠌ ᠌ ᠌ ᠌ ᠌ ᠌ ᠌᠌ ᠌ ᠌ ᠌ ᠌ ᠌ ᠌ ᠌ ᠌ ᠌᠌ ᠌ ᠌ ᠌ ᠌ ᠌ ᠌ ᠌ ᠌ ᠌᠌ ᠌ ᠌ ᠌ ᠌ ᠌ ᠌ ᠌ ᠌ ᠌᠌ ᠌ ᠌ ᠌ ᠌ ᠌ ᠌ ᠌ ᠌ ᠌
Answer:
$210
Step-by-step explanation:
Formula:
P = A (1 + r% x t)
P: Answer
A: Original value
R%: Percentage increase
T: Time
P = 200 (1 + 5% x 1)
P = $210
Answer:
Your answer is -6.
Step-by-step explanation:
Simplify 2(2x+3) to get 4x+6
Then simplify -6(x+9) to get -6x-54
Now you have 4x+6=-6x-54
Move all of the coefficients to one side:
10x+6=-54
Move all of the constants to the other side:
10x=-60
Divide each side by 10:
10/10x=-60/10
To get your answer of -6.
Answer:
4.5 sq. units.
Step-by-step explanation:
The given curve is 
⇒
...... (1)
This curve passes through (0,0) point.
Now, the straight line is y = 3x - 6 ....... (2)
Now, solving (1) and (2) we get,

⇒ (y - 3)(y + 2) = 0
⇒ y = 3 or y = -2
We will consider y = 3.
Now, y = 3x - 6 has zero at x = 2.
Therefor, the required are = 
= ![\sqrt{3} [{\frac{x^{\frac{3}{2} } }{\frac{3}{2} } }]^{3} _{0} - [\frac{3x^{2} }{2} - 6x ]^{3} _{2}](https://tex.z-dn.net/?f=%5Csqrt%7B3%7D%20%5B%7B%5Cfrac%7Bx%5E%7B%5Cfrac%7B3%7D%7B2%7D%20%7D%20%7D%7B%5Cfrac%7B3%7D%7B2%7D%20%7D%20%7D%5D%5E%7B3%7D%20_%7B0%7D%20-%20%5B%5Cfrac%7B3x%5E%7B2%7D%20%7D%7B2%7D%20-%206x%20%5D%5E%7B3%7D%20_%7B2%7D)
= ![[\frac{\sqrt{3}\times 2 \times 3^{\frac{3}{2} } }{3}] - [13.5 - 18 - 6 + 12]](https://tex.z-dn.net/?f=%5B%5Cfrac%7B%5Csqrt%7B3%7D%5Ctimes%202%20%5Ctimes%203%5E%7B%5Cfrac%7B3%7D%7B2%7D%20%7D%20%20%7D%7B3%7D%5D%20-%20%5B13.5%20-%2018%20-%206%20%2B%2012%5D)
= 6 - 1.5
= 4.5 sq. units. (Answer)
Its line 1
if we expand the second and third expressions they come back to the first.
The last one is called the vertex form of a parabola