
That's the simplest form of 15/35. You can use
3/7 to get other equivalent fractions by multiplying the numerator and denominator by the same number. Other examples are
9/21, 6/14, and 12/28.
Hope this helps!
Answer:
C) a sample distribution of a sample mean with n = 10

and 
Step-by-step explanation:
Here, the random experiment is rolling 10, 6 faced (with faces numbered from 1 to 6) fair dice and recording the average of the numbers which comes up and the experiment is repeated 20 times.So, here sample size, n = 20 .
Let,
= The number which comes up on the ith die on the jth trial.
∀ i = 1(1)10 and j = 1(1)20
Then,
= 
= 3.5 ∀ i = 1(1)10 and j = 1(1)20
and,
= 
= 
= 
15.166667
so,
= 

= 2.91667
and
= ![\sqrt {2.91667}[/tex [tex]\simeq 1.7078261036](https://tex.z-dn.net/?f=%5Csqrt%20%7B2.91667%7D%5B%2Ftex%3C%2Fp%3E%3Cp%3E%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Btex%5D%5Csimeq%201.7078261036)
Now we get that,

We get that
are iid RV's ∀ j = 1(1)20
Let, 
So, we get that 
=
for any i = 1(1)10
= 3.5
and,
![\sigma_{({\overline}{Y})} = \frac {\sigma_{Y_{j}}}{\sqrt {20}} = \frac {\sigma_{X_{ij}}}{\sqrt {20}} = \frac {1.7078261036}{\sqrt {20}} [tex]\simeq 0.38](https://tex.z-dn.net/?f=%5Csigma_%7B%28%7B%5Coverline%7D%7BY%7D%29%7D%20%3D%20%5Cfrac%20%7B%5Csigma_%7BY_%7Bj%7D%7D%7D%7B%5Csqrt%20%7B20%7D%7D%3C%2Fp%3E%3Cp%3E%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%3D%20%5Cfrac%20%7B%5Csigma_%7BX_%7Bij%7D%7D%7D%7B%5Csqrt%20%7B20%7D%7D%3C%2Fp%3E%3Cp%3E%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%3D%20%5Cfrac%20%7B1.7078261036%7D%7B%5Csqrt%20%7B20%7D%7D%3C%2Fp%3E%3Cp%3E%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Btex%5D%5Csimeq%200.38)
Hence, the option which best describes the distribution being simulated is given by,
C) a sample distribution of a sample mean with n = 10

and 
Answer:
a=-2
Step-by-step explanation:
Let me know if you need the steps tho.
Answer:
The length of the longest section x = 36 ft
Step-by-step explanation:
Total length of the wire = 51 ft
Let first section of wire = x
Second section of wire = y
Third section of wire = z
According to given data
x = 3 y & y = 4 z
Total length of the wire = x + y + z = 51


y = 12
x = 3 × 12 = 36

Therefore the length of the longest section x = 36 ft
Set up a proportion.
62 over 9 = x over 1
62/9=6.8
9/9=1
6.8 over 1
rounded would be seven
so 6.8 hotdogs per minute