Number of students = 9860
Total Population = 62,400
Percentage of students in the population can be calculated by:
(Number of students/Total population) x 100%
Using the values, we get:
Percentage of students = (9860/62400) x 100% = 15.80%
Thus, students constitute 15.80% of the entire population
Answer:
2/5 g/cm
Step-by-step explanation:
When you want to know "A per B", divide the given quantity of A by the corresponding quantity of B. ("Per" essentially means "divided by".)
It can be convenient to choose table values that make the division easy:
12 g/(30 cm) = 4/10 g/cm = 0.4 g/cm
20 g/(50 cm) = 2/5 g/cm . . . . . . . . . . . . . same as 0.4 g/cm
Hello!
In a function, each input has only one output. In A, three has two outputs, 4 and 5, so A is not a function.
In B, you can use something called the vertical line test to see if each x value has one y value as an output. You move an imaginary vertical line across the graph, and if it intersects with two points it is not a function. If we do this on our graph, it will not intersect two points. Therefore, B is a function.
In C, we can see that each input has one output, or there are all different inputs, so C is a function.
For D we can use that vertical line test again. It intersects both the points (-1,1) and (-1,6) so D is not a function
Our final answers are B and C.
I hope this helps!
Answer:
zero(0)
Step-by-step explanation:
The additive identity of a set of number is a number such that the its sum with any of the numbers in the set would give a result that is equal to the number in that set.
In other words, say for example the set of numbers is rational, the additive identity of rational numbers is 0. This is because, given any rational number say <em>x</em>, adding zero to the number <em>x</em> gives the same number <em>x. </em>i.e
x + 0 = x
If x is say 2, then we have;
2 + 0 = 2
Since adding zero to rational numbers gives has no effect on the numbers, then zero (0) is the additive identity of rational numbers.
<em></em>