1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sergeu [11.5K]
3 years ago
10

Use the​ add-on method for determining interest on a loan of ​$​,2540 with an annual rate of 6​% and a term of 4 years.​ Then, d

etermine the annual interest rate during the last month of the loan.
Mathematics
1 answer:
tresset_1 [31]3 years ago
7 0

Answer:

Part A

The interest on the loan is $609.6

Part B

The interest amount on the last month is $12.7

Step-by-step explanation:

Part A

With the add-on interest method, the interest on the loan is added before the monthly payment is determined

The monthly payment, A = (P × I)/n

Where;

A = The amount payed monthly

P = The principal amount borrowed = $2,540

I = The interest on the loan = P × R × T

R = The interest on the loan = 6%

T = The duration of the loan = 4 years

n = The number of monthly payment = 4 × 12 = 48

Plugging in the variables to the simple interest formula, we get;

I = $2,540 × 6/100 × 4 = $609.6

The interest on the loan, I = $609.6

Part B

The monthly payment is therefore;

∴ A = ($2,540 + $609.6)/48 = $65.61\overline 6

The amount payed as interest on the last month, I_m, is given as follows;

$65.61\overline 6 - $2,540/48 = $12.7

The amount payed as interest on the last month = $12.7

You might be interested in
Find several points that are on the graph of the function y = x^2 + 1. Plot the points in a coordinate plane.
beks73 [17]

Answer:

Below.

Step-by-step explanation:

Plot following points.

Calculate the point by plugging in values of x into x^2 + 1

for example When x = 0, y = 0^1 + 1 = 1.

So plot plot (0, 1),

Make a table of points to plot:

x   -3    -2    -1    0    1    2     3

y   10     5     2   1     2   5    10

When you plot the points you'll see the graph is U shaped.

The function is of second degree (as it contains x^2) so it wont be linear.

8 0
3 years ago
What is the equation of the quadratic graph with a focus of (3, 6) and a directrix of y = 4? f(x) = one fourth (x − 3)2 + 1 f(x)
mina [271]
 Let point (x, y) be any point on the graph, than the distance between (x, y) and the focus (3, 6) is sqrt((x - 3)^2 + (y - 6)^2) and the distance between (x, y) and the directrix, y = 4 is |y - 4|

Thus sqrt((x - 3)^2 + (y - 6)^2) = |y - 4|
(x - 3)^2 + (y - 6)^2 = (y - 4)^2
x^2 - 6x + 9 + y^2 - 12y + 36 = y^2 - 8y + 16
x^2 - 6x + 29 = -8y + 12y = 4y
(x - 3)^2 + 20 = 4y
y = 1/4(x - 3)^2 + 5

Required answer is f(x) = one fourth (x - 3)^2 + 5
8 0
3 years ago
4b−3.2=3(2b−4) can you plz solve
evablogger [386]

Answer:

4b-3.2=6b-12

12-3.2=6b -4b

8.8=2b

b=8.÷2

b=4.4

3 0
3 years ago
Se tiene un lote baldío de forma triangular bardeado. La barda de enfrente tiene una medida de 4 m,las otras dos bardas no es po
dybincka [34]

Answer:

a) La medida de la barda que está enfrente del ángulo 64° es de, aproximadamente, 6.4292m. b) El triángulo en cuestión <em>no es un triángulo rectángulo</em>, es decir, ninguno de sus ángulos internos es <em>recto </em>(90 grados sexagesimales). En estos casos, no se puede aplicar el Teorema de Pitágoras o la simple utilización de las razones trigonométricas; se aplican, en cambio, leyes para la resolución de triángulos oblicuángulos (o triángulos no rectángulos).

Step-by-step explanation:

Este problema no se puede resolver "aplicando sólo las razones trigonométricas o el teorema de Pitágoras" porque es sólo aplicable a <em>triángulos rectos</em>, es decir, uno de los ángulos del triángulo es recto o igual a <em>90</em> grados sexagesimales. Los dos restantes triángulos suman 90 grados sexagesimales, o se dice, son <em>complementarios</em>.

La resolución de triángulos que no son rectos (conocida en algunos textos como solución de problemas de triángulos oblicuángulos) pueden resolverse usando, la <em>ley de los senos (o teorema del seno)</em>, <em>ley de los cosenos</em> y <em>la ley de las tangentes</em>. El caso propuesto en la pregunta se ajusta a la <em>ley de los senos</em>:

\\ \frac{a}{\sin(\alpha)} = \frac{b}{\sin(\beta)} = \frac{c}{\sin(\gamma)}

Es decir, la razón entre el lado de un triángulo y el seno del ángulo que tiene frente a él es igual para todos los lados y ángulos del triángulo.

El triángulo de la pregunta no tiene un ángulo recto

La suma de los ángulos internos de un triángulo es de 180 grados sexagesimales:

\\ \alpha + \beta + \gamma = 180^{\circ}

En la pregunta tenemos que la suma de los dos ángulos propuestos es:

\\ 34^{\circ} + 64^{\circ} + \gamma = 180^{\circ}

\\ 98^{\circ} + \gamma = 180^{\circ}

Restando 98 grados sexagesimales a cada lado de la igualdad:

\\ 98^{\circ} - 98^{\circ} + \gamma = 180^{\circ} - 98^{\circ}

\\ 0 + \gamma = 180^{\circ} - 98^{\circ}

\\ \gamma = 82^{\circ}

Con lo que se deduce que no hay ningún ángulo recto en el triángulo propuesto y no se podría usar el Teorema de Pitágoras o simples razones trigonométricas para resolverlo.

Resolución del lado del triángulo

De la pregunta tenemos:

  • La barda de enfrente tiene una medida de 4m. El ángulo que está enfrente de esta barda (barda frontal) es de 34°.
  • No se sabe el valor del lado que está enfrente del ángulo de 64°, pero se puede calcular usando la Ley de los senos.

Digamos que:

\\ a = 4m, \alpha = 34^{\circ}

\\ b = x, \beta = 64^{\circ}

Entonces, aplicando la <em>Ley de los senos</em>:

\\ \frac{a}{\sin(\alpha)} = \frac{b}{\sin(\beta)}

Multiplicando a cada lado de la igualdad por \\ \sin(\beta)

\\ \frac{a}{\sin(\alpha)}*\sin(\beta) = \frac{b}{\sin(\beta)}*\sin(\beta)

\\ \frac{a}{\sin(\alpha)}*\sin(\beta) = b*\frac{\sin(\beta)}{\sin(\beta)}

\\ \frac{a}{\sin(\alpha)}*\sin(\beta) = b*1

\\ \frac{a}{\sin(\alpha)}*\sin(\beta) = b

Sustituyendo cada valor en la expresión anterior:

\\ b = \frac{a}{\sin(\alpha)}*\sin(\beta)

\\ b = \frac{4m}{\sin(34^{\circ})}*\sin(64^{\circ})

\\ b = 4m*\frac{0.8988}{0.5592}

\\ b = 6.4292m

En palabras, la medida de la barda que está enfrente del ángulo 64° es de, aproximadamente, 6.4292m.

El lado <em>c</em> puede obtenerse de manera similar considerando que \\ \gamma = 82^{\circ}.

6 0
3 years ago
10000000000-188888 10 points
Debora [2.8K]

Answer:

I think the calculation answer will be 9,999,811,112

7 0
3 years ago
Read 2 more answers
Other questions:
  • Danielle earns a 7.75% commission on everything she sells at the electronics store where she works. She also earns a base salary
    12·1 answer
  • Simplify 6 to the fifth power over 7 to the third power answer to the second power .
    15·1 answer
  • If I put 1500 into my savings account and 180 of interest at 4% simple interest how long was my money in my bank
    13·1 answer
  • (0
    5·1 answer
  • Please help! i’ll give brainliest (worth 10 points)
    6·2 answers
  • Co...
    11·1 answer
  • Y = 5x – 4<br> y = x2 + 4x – 16
    9·1 answer
  • Hey so im borreeeeeeeeeeeeeeddddddddddd
    11·2 answers
  • Sam is a cashier at the local grocery store. He earns $8/hr and works there 10 hours per
    5·1 answer
  • Hi can someone please help me with this. It urgent and time tysm.
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!