-24 because the negative is outside the absolute value
Answer:
The answer is the last one (32x^7y^15)
You can bring x to the second power (x^2) because (x) is basically x^1. This is a basic exponent rule. (x^m)^n = x^m times n.
Then you can apply this rule to (2xy^3)^5. First you bring two to the fifth power and get 32. Then you bring x^5 according to the rule. Then you bring y^15, also because of the rule.
Now you have:
x^2 times 32x^5y^15
Now you just multiply the like terms together (x^2 and x^5)
When you multiply two exponents with the same base, you add the exponents together: a^n times a^m = a^n+m.
So you end up with 32x^7y^15
Just an 15% 15.8% to be exact
Answer:
∠1 ≅ ∠2 ⇒ proved down
Step-by-step explanation:
#12
In the given figure
∵ LJ // WK
∵ LP is a transversal
∵ ∠1 and ∠KWP are corresponding angles
∵ The corresponding angles are equal in measures
∴ m∠1 = m∠KWP
∴ ∠1 ≅ ∠KWP ⇒ (1)
∵ WK // AP
∵ WP is a transversal
∵ ∠KWP and ∠WPA are interior alternate angles
∵ The interior alternate angles are equal in measures
∴ m∠KWP = m∠WPA
∴ ∠KWP ≅ ∠WPA ⇒ (2)
→ From (1) and (2)
∵ ∠1 and ∠WPA are congruent to ∠KWP
∴ ∠1 and ∠WPA are congruent
∴ ∠1 ≅ ∠WPA ⇒ (3)
∵ WP // AG
∵ AP is a transversal
∵ ∠WPA and ∠2 are interior alternate angles
∵ The interior alternate angles are equal in measures
∴ m∠WPA = m∠2
∴ ∠WPA ≅ ∠2 ⇒ (4)
→ From (3) and (4)
∵ ∠1 and ∠2 are congruent to ∠WPA
∴ ∠1 and ∠2 are congruent
∴ ∠1 ≅ ∠2 ⇒ proved