-8(9)= -72; -4(-6)= 24; -72+24= -48
The required proof is given in the table below:
![\begin{tabular}{|p{4cm}|p{6cm}|} Statement & Reason \\ [1ex] 1. $\overline{BD}$ bisects $\angle ABC$ & 1. Given \\ 2. \angle DBC\cong\angle ABD & 2. De(finition of angle bisector \\ 3. $\overline{AE}$||$\overline{BD}$ & 3. Given \\ 4. \angle AEB\cong\angle DBC & 4. Corresponding angles \\ 5. \angle AEB\cong\angle ABD & 5. Transitive property of equality \\ 6. \angle ABD\cong\angle BAE & 6. Alternate angles \end{tabular}](https://tex.z-dn.net/?f=%20%5Cbegin%7Btabular%7D%7B%7Cp%7B4cm%7D%7Cp%7B6cm%7D%7C%7D%20%0A%20Statement%20%26%20Reason%20%5C%5C%20%5B1ex%5D%20%0A1.%20%24%5Coverline%7BBD%7D%24%20bisects%20%24%5Cangle%20ABC%24%20%26%201.%20Given%20%5C%5C%0A2.%20%5Cangle%20DBC%5Ccong%5Cangle%20ABD%20%26%202.%20De%28finition%20of%20angle%20bisector%20%5C%5C%20%0A3.%20%24%5Coverline%7BAE%7D%24%7C%7C%24%5Coverline%7BBD%7D%24%20%26%203.%20Given%20%5C%5C%20%0A4.%20%5Cangle%20AEB%5Ccong%5Cangle%20DBC%20%26%204.%20Corresponding%20angles%20%5C%5C%0A5.%20%5Cangle%20AEB%5Ccong%5Cangle%20ABD%20%26%205.%20Transitive%20property%20of%20equality%20%5C%5C%20%0A6.%20%5Cangle%20ABD%5Ccong%5Cangle%20BAE%20%26%206.%20Alternate%20angles%0A%5Cend%7Btabular%7D)
All purpose calc.com one with the words on the web with a smiley calc type only the problem in no words
Answer:
it could be 1/1 or 2/2 or 3/3 or 4/4 or 5/5 or 6/6 it is the same thing just put the number like how i did depending on the question
Step-by-step explanation:
Step-by-step explanation:
Put 1 on the far left and 4 on the far right.
Put. 2 the top and 3 at the bottom.
Put 5 in the centre.
There are 2 ways you can find to to make all the numbers add up to 5.
The number in the centre is the common anwser to the sums.