Answer:
Se obtuvo $ 448 de ganancia por la venta de donas.
Se obtuvo $ 280 de ganancia por la venta de bolillos.
Step-by-step explanation:
1) <em>¿Cuanta ganancia se obtuvo en la venta de donas?</em>
La ganancia es el producto del porcentaje producido de donas, expresado como razón, el precio unitario de la dona y el total producido de panes. Es decir:


Se obtuvo $ 448 de ganancia por la venta de donas.
2) <em>¿Cuanta ganancia se obtuvo en la venta de bolillos?</em>
La ganancia es el producto del porcentaje producido de bolillos, expresado como razón, el precio unitario del bolillo y el total producido de panes. Es decir:


Se obtuvo $ 280 de ganancia por la venta de bolillos.
The equation of the straight line is y = -1/6(x - 10) + 4
<h3>How to determine the line equation?</h3>
The equation is given as:
y = 2x + 6
Linear equations are represented as:
y = mx + c
Where:
Slope = m
So, we have:
m = 6
The slopes of perpendicular lines are represented as:
n = -1/m
So, we have:
n = -1/6
The equation is then represented as:
y = n(x - x1) + y1
This gives
y = -1/6(x - 10) + 4
Hence, the equation of the straight line is y = -1/6(x - 10) + 4
Read more about linear equations at:
brainly.com/question/14323743
#SPJ1
Answer:
The angles of the triangle are approximately 87.395º, 57.271º and 35.334º.
Step-by-step explanation:
From statement we know all sides of the triangle (
,
,
), but all angles are unknown (
,
,
). (Please notice that angles with upper case letters represent the angle opposite to the side with the same letter but in lower case) From Geometry it is given that sum of internal angles of triangles equal 180º, we can obtain the missing information by using Law of Cosine twice and this property mentioned above.
If we know that
,
and
, then the missing angles are, respectively:
Angle A
(1)

![A = \cos^{-1}\left[\frac{16^{2}+11^{2}-19^{2}}{2\cdot (16)\cdot (11)} \right]](https://tex.z-dn.net/?f=A%20%3D%20%5Ccos%5E%7B-1%7D%5Cleft%5B%5Cfrac%7B16%5E%7B2%7D%2B11%5E%7B2%7D-19%5E%7B2%7D%7D%7B2%5Ccdot%20%2816%29%5Ccdot%20%2811%29%7D%20%5Cright%5D)

Angle B
(2)

![B = \cos^{-1}\left[\frac{19^{2}+11^{2}-16^{2}}{2\cdot (19)\cdot (11)} \right]](https://tex.z-dn.net/?f=B%20%3D%20%5Ccos%5E%7B-1%7D%5Cleft%5B%5Cfrac%7B19%5E%7B2%7D%2B11%5E%7B2%7D-16%5E%7B2%7D%7D%7B2%5Ccdot%20%2819%29%5Ccdot%20%2811%29%7D%20%5Cright%5D)

Angle C



The angles of the triangle are approximately 87.395º, 57.271º and 35.334º.
Answer:
1500
Step-by-step explanation:
1200/4=300
1200+300=1500
To find the time to reach ground solve -16t^2 +55 = 0
t^2 = 55/16
t = sqrt55 / 4 = 1.85 seconds