To make a box and whisker plot, first you write down all of the numbers from least to greatest.
0, 1, 3, 4, 7, 8, 10
The median is 4, so that’s the middle line of the plot.
So now we have:
0, 1, 3, [4,] 7, 8, 10
So next we have to find the 1st and 3rd interquartiles..
0, [1,] 3, [4,] 7, [8,] 10
Those are the next 2 points you put on the plot.
Lastly, the upper and lower extremes. These are the highest and lowest numbers in the data.
[0,] 1, 3, 4, 7, 8, [10]
These are the final points on the plot.
To make the box of a box-and-whisker plot, you plot the 3 Medians of the data: 1, 4, and 8, and connect those to make a box that has a line in the middle at 4.
Next, you plot the upper and lower extremes: 0 and 10, by making “whiskers” that connect to the box. So you draw a line from the extremes to the box.
2.8.1

By definition of the derivative,

We have

and

Combine these fractions into one with a common denominator:

Rationalize the numerator by multiplying uniformly by the conjugate of the numerator, and simplify the result:

Now divide this by <em>h</em> and take the limit as <em>h</em> approaches 0 :

3.1.1.
![f(x) = 4x^5 - \dfrac1{4x^2} + \sqrt[3]{x} - \pi^2 + 10e^3](https://tex.z-dn.net/?f=f%28x%29%20%3D%204x%5E5%20-%20%5Cdfrac1%7B4x%5E2%7D%20%2B%20%5Csqrt%5B3%5D%7Bx%7D%20-%20%5Cpi%5E2%20%2B%2010e%5E3)
Differentiate one term at a time:
• power rule


![\left(\sqrt[3]{x}\right)' = \left(x^{1/3}\right)' = \dfrac13 x^{-2/3} = \dfrac1{3x^{2/3}}](https://tex.z-dn.net/?f=%5Cleft%28%5Csqrt%5B3%5D%7Bx%7D%5Cright%29%27%20%3D%20%5Cleft%28x%5E%7B1%2F3%7D%5Cright%29%27%20%3D%20%5Cdfrac13%20x%5E%7B-2%2F3%7D%20%3D%20%5Cdfrac1%7B3x%5E%7B2%2F3%7D%7D)
The last two terms are constant, so their derivatives are both zero.
So you end up with

There is not alot information to answer the question.
Answer:
1215
Step-by-step explanation:
If you have a 25% or 1/4 increase, this would mean that you divided the total number of students and add the quotient to the main thing.
So: 972 divided by 1/4 = 972/4 = 243.
972 + 243 = 1215.