the answer to this is 5000,000
$10000 in certificate of deposit
$30000 in mutual funds
Step-by-step explanation:
Step 1:
Total amount Stephanie has inherited = $40000
Let x be the amount she should put in certificate of deposit.
So 40000-x is the amount to be deposited in mutual funds
Step 2:
Total interest she wants to earn is 5.4% of $40000 = 5.4*40000/100 = 2160
Interest from certificate of deposit = 2.1% of x = 2.1 * x /100
Interest from mutual funds is 6.5% = 6.5(40000-x)/100
Sum of the interest from both these equals 2160
so 2.1 * x /100 + 6.5(40000-x)/100 = 2160
=> 0.021x/100 + 2600-0.065x = 2160
=> -0.044x = -440 => x= 10000
Step 3 :
Hence Stephaine should invest $10000 in certificate of deposit and (40000-10000) = $30000 in mutual funds
Answer:
<u>Subtract 5 from input</u>.
Step-by-step explanation:
10-5=5
8-5=3
6-5=1
<u>N</u><u>o</u><u>t</u><u>e</u><u>:</u><u>i</u><u>f</u><u> </u><u>y</u><u>o</u><u>u</u><u> </u><u>n</u><u>e</u><u>e</u><u>d</u><u> </u><u>t</u><u>o</u><u> </u><u>a</u><u>s</u><u>k</u><u> </u><u>q</u><u>u</u><u>e</u><u>s</u><u>t</u><u>i</u><u>o</u><u>n</u><u> </u><u>l</u><u>e</u><u>t</u><u> </u><u>m</u><u>e</u><u> </u><u>k</u><u>n</u><u>o</u><u>w</u><u> </u><u>a</u><u>b</u><u>o</u><u>u</u><u>t</u><u> </u><u>i</u><u>t</u><u>.</u>
Answer:
<em>h</em><em> </em><em>(</em><em>x</em><em>)</em><em> </em><em>=</em><em> </em><em>f</em><em> </em><em> </em><em>(</em><em>x</em><em>)</em><em>.</em><em>g</em><em> </em><em>(</em><em>x</em><em>)</em>
<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>=</em><em> </em><em> </em><em>(</em><em>-</em><em>2</em><em>)</em><em>(</em><em>5x</em><em>-</em><em>6</em><em>)</em>
<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>=</em><em> </em><em>-</em><em>10</em><em>x</em><em> </em><em>+</em><em> </em><em>12</em>
<em>#</em><em>$</em><em>#</em><em> </em><em>THANK</em><em> </em><em>YOU</em><em> </em><em>#</em><em>$</em><em>#</em>
Answer:
an Injective function is a function that maps distinct elements of its domain to distinct elements of its codomain. In other words, every element of the function's codomain is the image of at most one element of its domain.
Step-by-step explanation: