When a genetic population follows Hardy-Weinberg Equilibrium (HW), it states that certain biological tenets or requirements must be met. Given so, then HW states that the total frequency of all homozygous dominant alleles (p) and the total frequency of all homozygous recessive alleles (q) for a gene, account for the total # of alleles for that gene in that HW population, which is 100% or 1.00 as a decimal. So in short: p + q = 1, and additionally (p+q)^2 = 1^2, or 1
So (p+q)(p+q) algebraically works out to p^2 + 2pq + q^2 = 1, where p^2 = frequency of homozygous dominant individuals, 2pq = frequency of heterozygous individuals, and q^2 = frequency of homozygous recessive individuals.
So the problem states that homozygous dominant individuals (p^2) account for 60%, or 0.60. Thus the square root (sr) of p^2 = p or the dominant allele frequency in the population. So sr(p^2) = sr(0.60) -->
p = 0.775 or 77.5%
Homozygous recessive individuals (q^2) account for 20%, or 0.20. Thus sr(q^2) = q or the recessive allele frequency in the population. So sr(q^2) = sr(0.20) --> q = 0.447 or 44.7%
But since 44.7% + 77.5% = 122.2%, which is not equal to 1, we have a situation in which the allele frequencies do not match up, therefore this population cannot be determined using the Hardy-Weinberg Equation.
Explanation:
Resistivity, commonly symbolized by the Greek letter rho, ρ, is quantitatively equal to the resistance R of a specimen such as a wire, multiplied by its cross-sectional area A, and divided by its length l; ρ = RA/l. The unit of resistance is the ohm.
#Dhakalrock ..
Answer:
(c) one chromatid each of both homologs.
Explanation:
The S phase is characterized in that the chromosomes are duplicated, in this way a copy is created and this copy is united forming chromatids. In meiosis it is characterized in that the homologs are assembled. According to the exercise, the S phase was incubated using 3H, presumably the chromosomes will have a chromatid to support the 3H residues. Later when the homologs assemble, each of those homologs would have a chromatid to withstand such radioactivity.
Become there friends and gain there trust by expressing your personal experiences
The scientific study of plants, including their physiology, structure, genetics, ecology, distribution, classification, and economic importance
ex:When a scientist studies plants in the rain forest, this is an example of studying botany.