Okay. So, we're looking for the percentage of Celina's running speed as her walking speed. Her running sped is 8 mph and her walking speed is 4mph. All we have to do is 4/8 = x/100. You put change/original and x/100, because we're looking for the percent of change from running speed to walking speed. Cross multiply the values to get 400 = 8x. Divide each side by 8 to isolate the "x". 400/8 is 50. x = 50. Celina's walking speed is 50% of her running speed. The answer is B: 50%.
Answer:
a
$10,151
$11448.12
b

Step-by-step explanation:
From the question we are told that
The sample size is n = 19
The sample mean is
$10,800
The standard deviation is
$1095
The population mean is
$225
Given that the confidence level is 99% the level of significance is mathematically represented as
%
=> 
Now the critical values of
is obtained from the normal distribution table as

The reason we are obtaining values for
is because
is the area under the normal distribution curve for both the left and right tail where the 99% interval did not cover while
is the area under the normal distribution curve for just one tail and we need the value for one tail in order to calculate the confidence interval
Now the margin of error is obtained as

substituting values


The 99% confidence interval for the population mean yearly premium is mathematically represented as

substituting values


$10,151
$11448.12
The largest sample needed is mathematically evaluated as
![n = [\frac{Z_{\frac{\alpha }{2} } * \sigma }{\mu} ]](https://tex.z-dn.net/?f=n%20%3D%20%20%5B%5Cfrac%7BZ_%7B%5Cfrac%7B%5Calpha%20%7D%7B2%7D%20%20%20%20%7D%20%2A%20%20%5Csigma%20%7D%7B%5Cmu%7D%20%5D)
substituting values
![n = [ \frac{ 2.58 * 1095}{225} ]^2](https://tex.z-dn.net/?f=n%20%3D%20%20%5B%20%20%20%20%5Cfrac%7B%202.58%20%20%2A%20%201095%7D%7B225%7D%20%5D%5E2)

Answer:
A) 2.25
Step-by-step explanation:
Sana nakatulong
I tried every combination. there seems to be something wrong with the informations you gave.
the second equation contains errors, and none of these 4 points can be solutions to the first equation alone