To solve, simply layout an equation.
(2x+3)(x+4)=1
Step 1: Simplify both sides of the equation.
2x2+11x+12=1
Step 2: Subtract 1 from both sides.
2x2+11x+12−1=1−1
2x2+11x+11=0
Step 3: Use quadratic formula with a=2, b=11, c=11.
x=-b±√b^2-4ac/2a
So, the answer for this problem is:
x=-11/4+1/4√33 or -11/4+-1/4√33
Add them all up then round the answer to yget
Answer:
To develop a molecular clock, you need to find which of the following?
a sequence of molecules
the rate at which changes occur in a type of molecule
how much total change has occurred in a type of molecule from two different species
how many molecules a species has
Step-by-step explanation:
To develop a molecular clock, you need to find which of the following?
a sequence of molecules
the rate at which changes occur in a type of molecule
how much total change has occurred in a type of molecule from two different species
how many molecules a species has
Answer:
and
.
Step-by-step explanation:
If we have to different functions like the ones attached, one is a parabolic function and the other is a radical function. To know where
, we just have to equalize them and find the solution for that equation:

So, applying the zero product property, we have:
![x=0\\x^{3}-1=0\\x^{3}=1\\x=\sqrt[3]{1}=1](https://tex.z-dn.net/?f=x%3D0%5C%5Cx%5E%7B3%7D-1%3D0%5C%5Cx%5E%7B3%7D%3D1%5C%5Cx%3D%5Csqrt%5B3%5D%7B1%7D%3D1)
Therefore, these two solutions mean that there are two points where both functions are equal, that is, when
and
.
So, the input values are
and
.
Option B is correct.
Step-by-step explanation:
We need to solve: ![\sqrt[3]{x^2}\sqrt[4]{x^3}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7Bx%5E2%7D%5Csqrt%5B4%5D%7Bx%5E3%7D)
We know that: ![\sqrt[n]{x}\sqrt[b]{x} =\sqrt[n*b]{x.x}= \sqrt[n*b]{x^2}](https://tex.z-dn.net/?f=%5Csqrt%5Bn%5D%7Bx%7D%5Csqrt%5Bb%5D%7Bx%7D%20%3D%5Csqrt%5Bn%2Ab%5D%7Bx.x%7D%3D%20%5Csqrt%5Bn%2Ab%5D%7Bx%5E2%7D)
Applying the above rule:
![\sqrt[3]{x^2}\sqrt[4]{x^3}\\=\sqrt[3*4]{x^2.x^3}\\=\sqrt[12]{x^5}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7Bx%5E2%7D%5Csqrt%5B4%5D%7Bx%5E3%7D%5C%5C%3D%5Csqrt%5B3%2A4%5D%7Bx%5E2.x%5E3%7D%5C%5C%3D%5Csqrt%5B12%5D%7Bx%5E5%7D)
So, Option B is correct.
Keywords: Solving with Exponents
Learn more about Solving with Exponents at:
#learnwithBrainly