Answer:
a) 0.50575,
b) 0.042
Step-by-step explanation:
Example 1.5. A person goes shopping 3 times. The probability of buying a good product for the first time is 0.7.
If the first time you can buy good products, the next time you can buy good products is 0.85; (I interpret this as, if you buy a good product, then the next time you buy a good product is 0.85).
And if the last time I bought a bad product, the next time I bought a good one is 0.6. Calculate the probability that:
a) All three times the person bought good goods.
P(Good on 1st shopping event AND Good on 2nd shopping event AND Good on 3rd shopping event) =
P(Good on 1st shopping event) *P(Good on 2nd shopping event | Good on 1st shopping event) * P(Good on 3rd shopping event | 1st and 2nd shopping events yield Good) =
(0.7)(0.85)(0.85) =
0.50575
b) Only the second time that person buys a bad product.
P(Good on 1st shopping event AND Bad on 2nd shopping event AND Good on 3rd shopping event) =
P(Good on 1st shopping event) *P(Bad on 2nd shopping event | Good on 1st shopping event) * P(Good on 3rd shopping event | 1st is Good and 2nd is Bad shopping events) =
(0.7)(1-0.85)(1-0.6) =
(0.7)(0.15)(0.4) =
0.042

the equation is a quadratic one, and it has a positive coefficient on the leading term, meaning, is opening upwards, so it has a "burrow" for the vertex.
the minimum or lowest point for a quadratic opening upwards is, well, the vertex point :), the "x" value is the year, the "y" or f(x) value is the population, we're asked for the year, or the x-coordinate of the vertex
well
<em>here's</em><em> your</em><em> solution</em>
<em> </em><em> </em><em> </em><em>=</em><em>></em><em> </em><em>it </em><em>is </em><em>given </em><em>that</em><em>. </em>
<em> </em><em> </em><em> </em><em> </em><em> </em><em>=</em><em>></em><em> </em><em>height</em><em> </em><em>of </em><em>cylinder</em><em> </em><em>=</em><em> </em><em>1</em><em>5</em><em>u</em><em>n</em><em>i</em><em>t</em>
<em> </em><em> </em><em> </em><em> </em><em> </em><em>=</em><em>></em><em> </em><em>radius</em><em> </em><em>of</em><em> </em><em>base </em><em>=</em><em> </em><em>9</em><em>u</em><em>n</em><em>i</em><em>t</em>
<em> </em><em> </em><em> </em><em> </em><em> </em><em>=</em><em>></em><em> </em><em>volume</em><em> of</em><em> </em><em>cylinder</em><em> </em><em>=</em><em> </em><em>π </em><em>r^</em><em>2</em><em>h</em><em> </em><em>cubic </em><em>unit</em>
<em> </em><em> </em><em> </em><em> </em><em>=</em><em>></em><em> </em><em>now,</em><em> </em><em>putting</em><em> the</em><em> value</em><em> of</em><em> </em><em>height</em><em> and</em><em> </em><em>radius </em>
<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>in </em><em>above </em><em>formula </em>
<em> </em><em> </em><em> </em><em> </em><em>=</em><em>></em><em> </em><em> </em><em>volume</em><em> </em><em>=</em><em> </em><em>2</em><em>2</em><em>/</em><em>7</em><em> </em><em>*</em><em>9</em><em>*</em><em>9</em><em>*</em><em>1</em><em>5</em>
<em> </em><em> </em><em> </em><em> </em><em>=</em><em>></em><em> </em><em>volume</em><em> </em><em>=</em><em> </em><em>3</em><em>6</em><em>1</em><em>7</em><em>7</em><em>c</em><em>u</em><em>b</em><em>i</em><em>c</em><em> </em><em>unit</em>
Answer:
Step-by-step explanation:
The formula for simple interest is expressed as
I = PRT/100
Where
P represents the principal
R represents interest rate
T represents time in years
I = interest after t years
From the information given
T = 8 months = 8/12 = 2/3 years
P = $3000
R = 9.3%
Therefore
I = (3000 × 9.3 × 2/3)/100
I = 18600/100
I = $186
The maturity value (in dollars) of this loan would be
3000 + 186 = $3186
The best way for him to check his answer would be to simply plug in the value found for x into the equation.
4(2) - 6 = 2
8 - 6 = 2
2 = 2