ANSWER:
Solve for the first variable in one of the equations, then substitute the result into the other equation.
Point Form:
(−2,−16)
Equation Form:
x= −2, y= −16
cot(<em>θ</em>) = cos(<em>θ</em>)/sin(<em>θ</em>)
So if both cot(<em>θ</em>) and cos(<em>θ</em>) are negative, that means sin(<em>θ</em>) must be positive.
Recall that
cot²(<em>θ</em>) + 1 = csc²(<em>θ</em>) = 1/sin²(<em>θ</em>)
so that
sin²(<em>θ</em>) = 1/(cot²(<em>θ</em>) + 1)
sin(<em>θ</em>) = 1 / √(cot²(<em>θ</em>) + 1)
Plug in cot(<em>θ</em>) = -2 and solve for sin(<em>θ</em>) :
sin(<em>θ</em>) = 1 / √((-2)² + 1)
sin(<em>θ</em>) = 1/√(5)
The LCM is (x+4)(x-3)(x+5)
Answer:
372
There are already 3 terms. So, now you have to find the 30th term.
The difference of 30 - 3 is 27. Now, since you add 9 for every term, multiply it by 27.
27 x 9 = 243.
The third term is 29. So you add 29.
Your answer will be 372. Hope it helps.