Answer:
the last one
Step-by-step explanation:
Answer:
7.) Line, point
8.) Line
9.) Line, point, rotational
10.) Rotational
11.) None
12.) Line
Answer: 4
Step-by-step explanation:
-6x = -24 divide both sides by -6 to isolate x
x = -24/-6
x = 4
Checking my work (plug in 4 for x and solve)
-6x = -24
-6(4) = -24
-24 = -24 it's correct!

since we know the <u>common difference</u> is d is 6, then to get from the 6th term to the 10th term, we use d 4 more times.
6th term..................37
7th term...................37 + 6
8th term...................37 + 6 + 6
9th term...................37 + 6 + 6 + 6
10th term...................37 + 6 + 6 + 6 + 6
.....................................61.
Answer:
a) 28,662 cm² max error
0,0111 relative error
b) 102,692 cm³ max error
0,004 relative error
Step-by-step explanation:
Length of cicumference is: 90 cm
L = 2*π*r
Applying differentiation on both sides f the equation
dL = 2*π* dr ⇒ dr = 0,5 / 2*π
dr = 1/4π
The equation for the volume of the sphere is
V(s) = 4/3*π*r³ and for the surface area is
S(s) = 4*π*r²
Differentiating
a) dS(s) = 4*2*π*r* dr ⇒ where 2*π*r = L = 90
Then
dS(s) = 4*90 (1/4*π)
dS(s) = 28.662 cm² ( Maximum error since dr = (1/4π) is maximum error
For relative error
DS´(s) = (90/π) / 4*π*r²
DS´(s) = 90 / 4*π*(L/2*π)² ⇒ DS(s) = 2 /180
DS´(s) = 0,0111 cm²
b) V(s) = 4/3*π*r³
Differentiating we get:
DV(s) = 4*π*r² dr
Maximum error
DV(s) = 4*π*r² ( 1/ 4*π*) ⇒ DV(s) = (90)² / 8*π²
DV(s) = 102,692 cm³ max error
Relative error
DV´(v) = (90)² / 8*π²/ 4/3*π*r³
DV´(v) = 1/240
DV´(v) = 0,004